Multiple Attribute Group Decision Making Under Hesitant Fuzzy Environment

Hesitant fuzzy set is a very useful means to depict the decision information in the process of decision making. In this paper, motivated by the extension principle of hesitant fuzzy sets, we export Einstein operations on fuzzy sets to hesitant fuzzy sets, and develop some new arithmetic averaging aggregation operators, such as the hesitant fuzzy Einstein weighted averaging (\(\mathrm{{HFW}}{\mathrm{{A}}^\varepsilon }\)) operator, hesitant fuzzy Einstein ordered weighted averaging (\(\mathrm{{HFOW}}{\mathrm{{A}}^\varepsilon }\)) operator, and hesitant fuzzy Einstein hybrid weighted averaging (\(\mathrm{{HFHW}}{\mathrm{{A}}^\varepsilon }\)) operator, for aggregating hesitant fuzzy elements. Finally, we apply the proposed operators to multiple attribute group decision making with hesitant fuzzy information.

[1]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[2]  J. Harsanyi Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility , 1955 .

[3]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[4]  Ioan Despi,et al.  n k -bags. , 2007 .

[5]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[6]  Zeshui Xu,et al.  Hesitant fuzzy information aggregation in decision making , 2011, Int. J. Approx. Reason..

[7]  Didier Dubois,et al.  Terminological difficulties in fuzzy set theory - The case of "Intuitionistic Fuzzy Sets" , 2005, Fuzzy Sets Syst..

[8]  Zeshui Xu,et al.  Generalized aggregation operators for intuitionistic fuzzy sets , 2010 .

[9]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[10]  Janusz Kacprzyk,et al.  The Ordered Weighted Averaging Operators , 1997 .

[11]  Chris Cornelis,et al.  Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application , 2004, Int. J. Approx. Reason..

[12]  Ioan Despi,et al.  n k -bags: Research Articles , 2007 .

[13]  Zeshui Xu,et al.  Hesitant Fuzzy Sets Theory , 2014, Studies in Fuzziness and Soft Computing.

[14]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[15]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[16]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .

[17]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[18]  R. Yager ON THE THEORY OF BAGS , 1986 .

[19]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[20]  V. Torra,et al.  A framework for linguistic logic programming , 2010 .

[21]  V. Torra The weighted OWA operator , 1997, International Journal of Intelligent Systems.

[22]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[23]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[24]  Masaharu Mizumoto,et al.  Some Properties of Fuzzy Sets of Type 2 , 1976, Inf. Control..

[25]  Vicenç Torra,et al.  On hesitant fuzzy sets and decision , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[26]  Z. S. Xu,et al.  An overview of operators for aggregating information , 2003, Int. J. Intell. Syst..

[27]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[28]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.