Estimation of the Quantum Fisher Information on a quantum processor

The quantum Fisher information (QFI) is a fundamental quantity in quantum physics and is central to the field of quantum metrology. It certifies quantum states that have useful multipartite entanglement for enhanced metrological tasks. Thus far, only lower bounds with finite distance to the QFI have been measured on quantum devices. Here, we present the experimental measurement of a series of polynomial lower bounds that converge to the QFI, done on a quantum processor. We combine advanced methods of the randomized measurement toolbox to obtain estimators that are robust against drifting errors caused uniquely during the randomized measurement protocol. We estimate the QFI for Greenberger-Horne-Zeilinger states, observing genuine multipartite entanglement and the Heisenberg limit attained by our prepared state. Then, we prepare the ground state of the transverse field Ising model at the critical point using a variational circuit. We estimate its QFI and investigate the interplay between state optimization and noise induced by increasing the circuit depth.

[1]  Chaoyang Lu,et al.  Generation of genuine entanglement up to 51 superconducting qubits , 2023, Nature.

[2]  Toshinari Itoko,et al.  Detection of temporal fluctuation in superconducting qubits for quantum error mitigation , 2023, 2307.04337.

[3]  P. Zoller,et al.  Exploring large-scale entanglement in quantum simulation , 2023, Nature.

[4]  J. Preskill,et al.  Enhanced estimation of quantum properties with common randomized measurements , 2023, 2304.12292.

[5]  Michael J. Hoffmann,et al.  Quantum information phases in space-time: measurement-induced entanglement and teleportation on a noisy quantum processor , 2023, 2303.04792.

[6]  R. Kueng,et al.  Improved machine learning algorithm for predicting ground state properties , 2023, Nature communications.

[7]  B. Kraus,et al.  Entanglement phase diagrams from partial transpose moments , 2022, 2212.10181.

[8]  Betis Baheri,et al.  Quantum Noise in the Flow of Time: A Temporal Study of the Noise in Quantum Computers , 2022, 2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS).

[9]  R. Kueng,et al.  Entanglement Barrier and its Symmetry Resolution: Theory and Experimental Observation , 2022, PRX Quantum.

[10]  R. Kueng,et al.  The randomized measurement toolbox , 2022, Nature Reviews Physics.

[11]  R. Kueng,et al.  Symmetry-resolved entanglement detection using partial transpose moments , 2021, npj Quantum Information.

[12]  C. Branciard,et al.  Quantum Fisher Information from Randomized Measurements. , 2021, Physical review letters.

[13]  H. Neven,et al.  Realizing topologically ordered states on a quantum processor , 2021, Science.

[14]  N. Goldman,et al.  Experimental estimation of the quantum Fisher information from randomized measurements , 2021, Physical Review Research.

[15]  John Preskill,et al.  Efficient estimation of Pauli observables by derandomization , 2021, Physical review letters.

[16]  R. Kueng,et al.  Symmetry-resolved entanglement detection using partial transpose moments , 2021, npj Quantum Information.

[17]  O. Gühne,et al.  Optimal Entanglement Certification from Moments of the Partial Transpose. , 2021, Physical review letters.

[18]  P. Zoller,et al.  Importance Sampling of Randomized Measurements for Probing Entanglement. , 2021, Physical review letters.

[19]  T. Monz,et al.  Compact Ion-Trap Quantum Computing Demonstrator , 2021, PRX Quantum.

[20]  Patrick J. Coles,et al.  Sub-quantum Fisher information , 2021, Quantum Science and Technology.

[21]  Gary J. Mooney,et al.  Generation and verification of 27-qubit Greenberger-Horne-Zeilinger states in a superconducting quantum computer , 2021, 2101.08946.

[22]  R. Kueng,et al.  Symmetry-resolved dynamical purification in synthetic quantum matter , 2021, SciPost Physics.

[23]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[24]  A. Smerzi,et al.  Metrological Detection of Multipartite Entanglement from Young Diagrams. , 2020, Physical review letters.

[25]  D. E. Koh,et al.  Classical Shadows with Noise , 2020, Quantum.

[26]  S. Flammia,et al.  Robust Shadow Estimation , 2020, PRX Quantum.

[27]  Patrick J. Coles,et al.  Variational quantum algorithm for estimating the quantum Fisher information , 2020, Physical Review Research.

[28]  R. Kueng,et al.  Mixed-state entanglement from local randomized measurements , 2020, Physical review letters.

[29]  P. Zoller,et al.  Many-Body Chern Number from Statistical Correlations of Randomized Measurements. , 2020, Physical review letters.

[30]  Mark M. Wilde,et al.  Geometric distinguishability measures limit quantum channel estimation and discrimination , 2020, Quantum Information Processing.

[31]  T. Ozawa,et al.  Quantum Fisher information measurement and verification of the quantum Cramér–Rao bound in a solid-state qubit , 2020, npj Quantum Information.

[32]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[33]  P. Zoller,et al.  Quantum Information Scrambling in a Trapped-Ion Quantum Simulator with Tunable Range Interactions. , 2020, Physical review letters.

[34]  P. Zoller,et al.  Cross-Platform Verification of Intermediate Scale Quantum Devices. , 2019, Physical review letters.

[35]  B'alint Koczor,et al.  Variational-state quantum metrology , 2019, New Journal of Physics.

[36]  P. Zoller,et al.  Many-body topological invariants from randomized measurements in synthetic quantum matter , 2019, Science Advances.

[37]  Sarah Sheldon,et al.  Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences , 2019, Physical Review A.

[38]  M. Lukin,et al.  Generation and manipulation of Schrödinger cat states in Rydberg atom arrays , 2019, Science.

[39]  H. Fan,et al.  Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits , 2019, Science.

[40]  Peter Zoller,et al.  Statistical correlations between locally randomized measurements: A toolbox for probing entanglement in many-body quantum states , 2018, Physical Review A.

[41]  Anthony D. Castellano,et al.  Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. , 2018, Physical review letters.

[42]  Peter Zoller,et al.  Probing Rényi entanglement entropy via randomized measurements , 2018, Science.

[43]  L. Pezzè,et al.  Multipartite Entanglement at Finite Temperature , 2018, Scientific Reports.

[44]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[45]  W. W. Ho,et al.  Efficient variational simulation of non-trivial quantum states , 2018, SciPost Physics.

[46]  Jian-Wei Pan,et al.  18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. , 2018, Physical review letters.

[47]  T. Roscilde,et al.  Quantum Critical Metrology. , 2017, Physical review letters.

[48]  Augusto Smerzi,et al.  Multipartite Entanglement in Topological Quantum Phases. , 2017, Physical review letters.

[49]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[50]  Rosario Fazio,et al.  Multipartite entanglement after a quantum quench , 2017, 1701.05883.

[51]  Davide Girolami,et al.  Detecting metrologically useful asymmetry and entanglement by a few local measurements , 2016, 1611.02004.

[52]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[53]  Jean-Daniel Bancal,et al.  Bell correlations in a Bose-Einstein condensate , 2016, Science.

[54]  M. L. Wall,et al.  Quantum spin dynamics and entanglement generation with hundreds of trapped ions , 2015, Science.

[55]  Jakob Reichel,et al.  Deterministic generation of multiparticle entanglement by quantum Zeno dynamics , 2015, Science.

[56]  Davide Girolami,et al.  Witnessing Multipartite Entanglement by Detecting Asymmetry , 2015, Entropy.

[57]  Peter Zoller,et al.  Measuring multipartite entanglement through dynamic susceptibilities , 2015, Nature Physics.

[58]  Ryan O'Donnell,et al.  Efficient quantum tomography , 2015, STOC.

[59]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[60]  J. P. Garrahan,et al.  Dynamical phase transitions as a resource for quantum enhanced metrology , 2014, 1411.3914.

[61]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[62]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[63]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[64]  F. Nori,et al.  Quantum Fisher information as a signature of the superradiant quantum phase transition , 2013, 1312.1426.

[65]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[66]  Augusto Smerzi,et al.  Zeno dynamics, indistinguishability of state, and entanglement. , 2012, Physical review letters.

[67]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[68]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.

[69]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[70]  Alfredo Luis,et al.  Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.

[71]  A. Luis,et al.  Intrinsic metrological resolution as a distance measure and nonclassical light , 2008, 0801.4680.

[72]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[73]  F. Mezzadri How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.

[74]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[75]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[76]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[77]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[78]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[79]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[80]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[81]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[82]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .