Sparse identification in chemical master equations for monomolecular reaction networks

This paper considers the identification of kinetic parameters associated with the dynamics of closed biochemical reaction networks. These reaction networks are modeled by chemical master equations in which the reactions and the associated concentrations/populations of species are characterized by probability distributions. The vector of unknown kinetic parameters is usually highly sparse. Using this sparsity, a robust statistical estimation algorithm is developed to estimate the kinetic parameters from stochastic experimental data. The algorithm is based on regularized maximum likelihood estimation and it is shown to be decomposable into a two-stage optimization. The first-stage optimization has a closed-form solution and the second-stage optimization is to maximize sparsity in the kinetic parameter vector with a guaranteed data-fitting error. The second-stage optimization can be solved using off-the-shelf algorithms for constrained ℓ1 minimization.

[1]  Alan S. Perelson,et al.  Bulletin of Mathematical Biology Special Issue , 2006 .

[2]  Eduardo Sontag,et al.  Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. , 2005, Journal of theoretical biology.

[3]  Christopher A. Penfold,et al.  How to infer gene networks from expression profiles, revisited , 2011, Interface Focus.

[4]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[5]  S. Thomas McCormick,et al.  The Weighted Sparsity Problem: Complexity and Algorithms , 1993, SIAM J. Discret. Math..

[6]  Gheorghe Craciun,et al.  Identifiability of chemical reaction networks , 2008 .

[7]  H. Othmer,et al.  A stochastic analysis of first-order reaction networks , 2005, Bulletin of mathematical biology.

[8]  Antonis Papachristodoulou,et al.  Efficient, sparse biological network determination , 2009, BMC Systems Biology.

[9]  George J. Pappas,et al.  Genetic network identification using convex programming. , 2009, IET systems biology.

[10]  Kluwer academic publishers acquires ESCOM science publishers , 1997 .

[11]  D. Steinberg,et al.  Technometrics , 2008 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Marc Timme,et al.  Revealing network connectivity from response dynamics. , 2006, Physical review letters.

[14]  W. Huisinga,et al.  Solving the chemical master equation for monomolecular reaction systems analytically , 2006, Journal of mathematical biology.

[15]  E D Gilles,et al.  Using chemical reaction network theory to discard a kinetic mechanism hypothesis. , 2005, Systems biology.

[16]  F. Doyle,et al.  A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions. , 2004, Genome research.

[17]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. Hesterberg,et al.  Least angle and ℓ1 penalized regression: A review , 2008, 0802.0964.

[19]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[20]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[21]  David Kempe,et al.  A decentralized algorithm for spectral analysis , 2008, J. Comput. Syst. Sci..

[22]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[23]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .