A scaling algorithm for polynomial constraint satisfaction problems

Good scaling is an essential requirement for the good behavior of many numerical algorithms. In particular, for problems involving multivariate polynomials, a change of scale in one or more variable may have drastic effects on the robustness of subsequent calculations. This paper surveys scaling algorithms for systems of polynomials from the literature, and discusses some new ones, applicable to arbitrary polynomial constraint satisfaction problems.

[1]  N. Higham,et al.  Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems , 2008 .

[2]  L. Watson,et al.  HOMPACK: a suite of codes for globally convergent homotopy algorithms. Technical report No. 85-34 , 1985 .

[3]  B. Parlett,et al.  Methods for Scaling to Doubly Stochastic Form , 1982 .

[4]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .

[5]  Sunyoung Kim,et al.  Numerical Stability of Path Tracing in Polyhedral Homotopy Continuation Methods , 2004, Computing.

[6]  Paul Van Dooren,et al.  Normwise Scaling of Second Order Polynomial Matrices , 2004, SIAM J. Matrix Anal. Appl..

[7]  Ferenc Domes,et al.  GLOPTLAB: a configurable framework for the rigorous global solution of quadratic constraint satisfaction problems , 2009, Optim. Methods Softw..

[8]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[9]  Olaf Schenk,et al.  Weighted Matchings for Preconditioning Symmetric Indefinite Linear Systems , 2006, SIAM J. Sci. Comput..

[10]  Arnold Neumaier,et al.  Verified global optimization with GloptLab , 2007 .

[11]  A. Neumaier,et al.  A NEW PIVOTING STRATEGY FOR GAUSSIAN ELIMINATION , 1996 .

[12]  John R. Rice Matrix Computations and Mathematical Software , 1983 .

[13]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[14]  J. Verschelde,et al.  Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .

[15]  Iain S. Duff,et al.  The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[16]  J. Reid,et al.  On the Automatic Scaling of Matrices for Gaussian Elimination , 1972 .

[17]  Michele Benzi,et al.  Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..

[18]  Olaf Schenk,et al.  The effects of unsymmetric matrix permutations and scalings in semiconductor device and circuit simulation , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  Alexander P. Morgan,et al.  Chemical equilibrium systems as numerical test problems , 1990, TOMS.