A statistical framework for testing chaotic dynamics via Lyapunov exponents

Abstract One common criticism of the existing Lyapunov exponents algorithms is the absence of a distributional theory which provides a framework for the statistical hypothesis testing for the calculated Lyapunov exponents. This paper presents a methodology to calculate the empirical distributions of Lyapunov exponents by using a bootstrapping technique. The methodology of the paper provides a formal test of chaos under the null hypothesis. The numerical examples show that the method works well with small data sets.

[1]  R. Gencay,et al.  An algorithm for the n Lyapunov exponents of an n -dimensional unknown dynamical system , 1992 .

[2]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[3]  A. Pewsey Exploring the Limits of Bootstrap , 1994 .

[4]  J. Kurths,et al.  An attractor in a solar time series , 1987 .

[5]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[6]  A. Gallant,et al.  Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data , 1991 .

[7]  Henry D. I. Abarbanel,et al.  Local Lyapunov exponents computed from observed data , 1992 .

[8]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[9]  Brown,et al.  Computing the Lyapunov spectrum of a dynamical system from an observed time series. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[10]  A. Gallant,et al.  Estimating the Lyapunov Exponent of a Chaotic System with Nonparametric Regression , 1992 .

[11]  U. Parlitz,et al.  Lyapunov exponents from time series , 1991 .

[12]  W. Brock,et al.  Is the business cycle characterized by deterministic chaos , 1988 .

[13]  J. Shao,et al.  Resampling estimation when observations are m–dependent , 1988 .

[14]  W. Brock Distinguishing random and deterministic systems: Abridged version , 1986 .

[15]  Regina Y. Liu Moving blocks jackknife and bootstrap capture weak dependence , 1992 .

[16]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[17]  H. Abarbanel,et al.  LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS: THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA , 1991 .

[18]  R. Gencay,et al.  Lyapunov Exponents as a Nonparametric Diagnostic for Stability Analysis , 1992 .

[19]  Thanasis Stengos,et al.  The stability of Canadian macroeconomic data as measured by the largest Lyapunov exponent , 1988 .

[20]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[21]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[22]  F. Takens Detecting strange attractors in turbulence , 1981 .

[23]  Henry D. I. Abarbanel,et al.  Variation of Lyapunov exponents on a strange attractor , 1991 .