Local structure of Ca dopant in BaTiO3 by Ca K-edge X-ray absorption near-edge structure and first-principles calculations

[1]  H. Moriwake,et al.  First-Principles Calculation of Solution Energy of Alkaline-Earth Metal Elements to BaTiO3 , 2007 .

[2]  I. Tanaka,et al.  Dilute Ga Dopant in TiO2 by X-ray Absorption Near-Edge Structure , 2006 .

[3]  I. Tanaka,et al.  XANES and ELNES in Ceramic Science , 2005 .

[4]  I. Tanaka,et al.  Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti K edge , 2005 .

[5]  Y. Y. Chen,et al.  The electronic structure of Ba1−xCaxTiO3 probed by X-ray absorption spectroscopy , 2004 .

[6]  I. Tanaka,et al.  First-principles calculations of ELNES and XANES of selected wide-gap materials: Dependence on crystal structure and orientation , 2004 .

[7]  I. Tanaka,et al.  Identification of ultradilute dopants in ceramics , 2003, Nature materials.

[8]  Y. Sakabe,et al.  Dielectric Properties of Fine-Grained BaTiO3 Ceramics Doped with CaO , 2002 .

[9]  I. Lin,et al.  Electronic structures of Ba1−xCaxTiO3 studied by x-ray absorption spectroscopy and theoretical calculation , 2001 .

[10]  W. Ching,et al.  Ab initio calculation of the core-hole effect in the electron energy-loss near-edge structure , 2000 .

[11]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[12]  Junichi Sugino,et al.  The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO3 , 1999 .

[13]  T. Okuda,et al.  The Effect of MgO and Rare-Earth Oxide on Formation Behavior of Core-Shell Structure in BaTiO3 , 1997 .

[14]  Hideji Igarashi Hideji Igarashi,et al.  Effect of A-Site Substitution and Firing Temperature on Microstructure and Electrical Properties of BaTiO3 Semiconducting Ceramics Fired by Reduction-Reoxidation Method , 1997 .

[15]  Mazur,et al.  Oxygen vacancies in BaTiO3. , 1996, Physical review. B, Condensed matter.

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[18]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[19]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[20]  I.P. Kaminow,et al.  Principles and applications of ferroelectrics and related materials , 1978, Proceedings of the IEEE.

[21]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[22]  S. H. Wemple Polarization Fluctuations and the Optical-Absorption Edge in BaTi O 3 , 1970 .

[23]  J. Harada,et al.  X-ray and neutron diffraction study of tetragonal barium titanate , 1970 .

[24]  G. Shirane,et al.  Study of Critical Fluctuations in BaTi O 3 by Neutron Scattering , 1969 .

[25]  G. Sutherland,et al.  Infrared Spectrum of Barium Titanate , 1954 .

[26]  S. Phanichphant,et al.  Phase content, tetragonality, and crystallite size of nanoscaled barium titanate synthesized by the catecholate process: effect of calcination temperature , 2003 .