An Improved Second Order Sliding Mode Twisting Algorithm for Finite-Time Trajectory Tracking of Intelligent Vehicle

This paper proposes a kind of controller comprising Twisting algorithm and adaptive method for the trajectory tracking control of intelligent vehicle system with uncertainties. Firstly, by the adding the adaptive compensation controller, shortcomings of existing second order sliding mode Twisting algorithm are avoided. Second, based on the previosly improved method, we also add another kind of adaptive controller to make the controller parameters do not need to be selected. The intelligent vehicle system can achieve finite-time trajectory tracking, the upper bounds of the uncertainties do not need to be determined previously, and the controller parameters can be adjusted automatically according to the system state. The effectiveness and robustness of the improved algorithm are verified by theory and simulation results of the intelligent vehicle system.

[1]  Xuan Sun,et al.  An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints , 2013, Commun. Nonlinear Sci. Numer. Simul..

[2]  Zhiqiang Zheng,et al.  Robust adaptive second-order sliding-mode control with fast transient performance , 2012 .

[3]  M. S. Güzel,et al.  Autonomous Vehicle Navigation Using Vision and Mapless Strategies: A Survey , 2013 .

[4]  Michael Defoort,et al.  Finite-time controller design for nonholonomic mobile robot using the heisenberg form , 2010, 2010 IEEE International Conference on Control Applications.

[5]  Sun Haibin,et al.  Finite time tracking control of a nonholonomic mobile robot with external disturbances , 2012, Proceedings of the 31st Chinese Control Conference.

[6]  Anthony M. Bloch,et al.  Optimal control of underactuated nonholonomic mechanical systems , 2006, 2006 American Control Conference.

[7]  Zhanshan Zhao,et al.  Higher order adaptive sliding mode control for a class of SISO systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[8]  Jong-Hwan Kim,et al.  Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots , 1999, IEEE Trans. Robotics Autom..

[9]  Ashfaq Ahmad Mian,et al.  Modeling and Backstepping-based Nonlinear Control Strategy for a 6 DOF Quadrotor Helicopter , 2008 .

[10]  Alexander S. Poznyak,et al.  Lyapunov function design for finite-time convergence analysis: "Twisting" controller for second-order sliding mode realization , 2009, Autom..

[11]  Arie Levant,et al.  Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence , 2001, IEEE Trans. Autom. Control..

[12]  Bin Hu,et al.  A Scale Adaptive Mean-Shift Tracking Algorithm for Robot Vision , 2013 .

[13]  Spyros G. Tzafestas,et al.  Mobile robot motion control in partially unknown environments using a sliding-mode fuzzy-logic controller , 2000, Robotics Auton. Syst..

[14]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[15]  Jung-Min Yang,et al.  Sliding Mode Motion Control of Nonholonomic Mobile Robots , 1999 .

[16]  Dennis S. Bernstein,et al.  A BENCHMARK PROBLEM FOR NONLINEAR CONTROL DESIGN , 1998 .

[17]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[18]  Pei Xin Robust Trajectory Tracking Controller Design for Mobile Robots with Bounded Input , 2003 .

[19]  Dewen Hu,et al.  A Finite-Time Controller for a Class of Wheeled Mobile Robots , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[20]  Norihiko Adachi,et al.  Adaptive tracking control of a nonholonomic mobile robot , 2000, IEEE Trans. Robotics Autom..

[21]  Tzuu-Hseng S. Li,et al.  Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots , 2009 .