Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03217a Click here for additional data file.

Continuous flow mechanochemical and melt-phase synthesis at kg h–1 rates from solid reagents and either no solvent, or only minimal solvent, is reported.

[1]  D. Farrusseng,et al.  A water-based and high space-time yield synthetic route to MOF Ni2(dhtp) and its linker 2,5-dihydroxyterephthalic acid , 2014 .

[2]  S. James,et al.  An array-based study of reactivity under solvent-free mechanochemical conditions—insights and trends , 2008 .

[3]  Katharina Jacob,et al.  Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale. , 2014, Faraday discussions.

[4]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[5]  Yu Ding,et al.  Bis{μ-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}dinickel(II) , 2007, Acta crystallographica. Section E, Structure reports online.

[6]  N. Coville,et al.  Organometallic Chemistry in the Melt Phase , 2007 .

[7]  R. Blair,et al.  The scalability in the mechanochemical syntheses of edge functionalized graphene materials and biomass-derived chemicals. , 2014, Faraday discussions.

[8]  A. Cheetham,et al.  Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. , 2010, Angewandte Chemie.

[9]  K. Harris,et al.  Efficient, Scalable, and Solvent-free Mechanochemical Synthesis of the OLED Material Alq3 (q = 8-Hydroxyquinolinate) , 2012 .

[10]  F. Emmerling,et al.  Mechanochemical Synthesis of Metal-Organic Frameworks : A Fast and FacileApproach towardQuantitativeYields andHighSpecific SurfaceAreas , 2010 .

[11]  David Grosso,et al.  Green scalable aerosol synthesis of porous metal-organic frameworks. , 2013, Chemical communications.

[12]  W. Jones,et al.  Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. , 2002, Chemical communications.

[13]  U. Müller,et al.  The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications , 2012 .

[14]  Tomislav Friščić,et al.  Real-time and in situ monitoring of mechanochemical milling reactions. , 2013, Nature chemistry.

[15]  L. Takács The historical development of mechanochemistry. , 2013, Chemical Society reviews.

[16]  S. James,et al.  Mechanochemical synthesis of homo- and hetero-rare-earth(III) metal–organic frameworks by ball milling , 2010 .

[17]  M. Poliakoff,et al.  Synthesis of metal–organic frameworks by continuous flow , 2014 .

[18]  Stuart L James,et al.  Better understanding of mechanochemical reactions: Raman monitoring reveals surprisingly simple 'pseudo-fluid' model for a ball milling reaction. , 2014, Chemical communications.

[19]  D. Peters,et al.  Mechanochemical synthesis of an organometallic compound: a high volume manufacturing method. , 2014, Faraday discussions.

[20]  Michael J. Ferguson,et al.  One-pot two-step mechanochemical synthesis: ligand and complex preparation without isolating intermediates , 2014 .

[21]  S. James,et al.  Solvent-free synthesis of a microporous metal–organic framework , 2006 .

[22]  M. Senna,et al.  Hallmarks of mechanochemistry: from nanoparticles to technology. , 2013, Chemical Society reviews.

[23]  Richard Blom,et al.  Base‐Induced Formation of Two Magnesium Metal‐Organic Framework Compounds with a Bifunctional Tetratopic Ligand , 2008 .

[24]  C. Janiak,et al.  Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF , 2014 .

[25]  Chongli Zhong,et al.  A water stable metal-organic framework with optimal features for CO2 capture. , 2013, Angewandte Chemie.

[26]  K. Nagapudi,et al.  Manufacture of pharmaceutical co-crystals using twin screw extrusion: a solvent-less and scalable process. , 2010, Journal of pharmaceutical sciences.

[27]  K. Nagapudi,et al.  Application of twin screw extrusion to the manufacture of cocrystals: scale-up of AMG 517-sorbic acid cocrystal production. , 2014, Faraday discussions.

[28]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[29]  Jie‐Peng Zhang,et al.  Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. , 2011, Chemical communications.

[30]  R. Clowes,et al.  Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) , 2010 .

[31]  T. Do,et al.  Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides , 2013 .

[32]  James Mack,et al.  Mechanochemistry: opportunities for new and cleaner synthesis. , 2012, Chemical Society reviews.

[33]  T. McNally,et al.  Localization of MWCNTs in PET/LDPE blends , 2013 .

[34]  M. Mehring,et al.  Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)] , 2010 .

[35]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[36]  T. Friščić New opportunities for materials synthesis using mechanochemistry , 2010 .

[37]  Long Yu,et al.  Polymer blends and composites from renewable resources , 2006 .

[38]  T. Friščić,et al.  Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. , 2010, Angewandte Chemie.

[39]  G. Bowmaker,et al.  Solvent-assisted mechanochemistry. , 2013, Chemical communications.

[40]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[41]  P. York,et al.  Cocrystalization and Simultaneous Agglomeration Using Hot Melt Extrusion , 2010, Pharmaceutical Research.