Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas.

Optical pumping of an optically thick atomic vapor typically requires a quenching buffer gas, such as N2, to prevent radiation trapping of unpolarized photons which would depolarize the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4.5 times higher polarization of K than direct optical pumping of K in the absence of N2. Such spin-exchange polarization transfer from optically thin species is useful in a variety of areas, including spin-polarized nuclear scattering targets and electron beams, quantum-nondemolition spin measurements, and ultrasensitive magnetometry.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[3]  Erin Riley,et al.  A Senior Thesis , 2002 .