A Survey of Image Statistics Relevant to Computer Graphics

The statistics of natural images have attracted the attention of researchers in a variety of fields and have been used as a means to better understand the human visual system and its processes. A number of algorithms in computer graphics, vision and image processing take advantage of such statistical findings to create visually more plausible results. With this report we aim to review the state of the art in image statistics and discuss existing and potential applications within computer graphics and related areas.

[1]  Siwei Lyu,et al.  Steganalysis using higher-order image statistics , 2006, IEEE Transactions on Information Forensics and Security.

[2]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[3]  N. Grzywacz,et al.  Power spectra and distribution of contrasts of natural images from different habitats , 2003, Vision Research.

[4]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  D. O’Carroll,et al.  Assessing the naturalness of scenes: An approach using statistics of local features , 2008, 2008 23rd International Conference Image and Vision Computing New Zealand.

[6]  James N Caron,et al.  Noniterative blind data restoration by use of an extracted filter function. , 2002, Applied optics.

[7]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[8]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[9]  S. Dakin,et al.  Natural image statistics mediate brightness ‘filling in’ , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  Daniel L. Ruderman,et al.  Origins of scaling in natural images , 1996, Vision Research.

[11]  B. Boycott,et al.  Parasol (Pα) ganglion-cells of the primate fovea: Immunocytochemical staining with antibodies against GABAA-receptors , 1993, Vision Research.

[12]  William T. Freeman,et al.  Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[13]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[14]  Edward H. Adelson,et al.  Surface Reflectance Estimation and Natural Illumination Statistics , 2001 .

[15]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[16]  Raimondo Schettini,et al.  Color balancing of digital photos using simple image statistics , 2004, Pattern Recognit..

[17]  Erik Reinhard,et al.  Progressive histogram reshaping for creative color transfer and tone reproduction , 2010, NPAR.

[18]  Christopher Young,et al.  Visualization in landscape and environmental planning , 2007, Landscape Ecology.

[19]  Norberto M. Grzywacz,et al.  Occlusions and their relationship with the distribution of contrasts in natural images , 2000, Vision Research.

[20]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  B. Olshausen,et al.  Applied mathematics: The statistics of style , 2010, Nature.

[22]  John S. Werner,et al.  Individual differences in contrast sensitivity functions: Longitudinal study of 4-, 6- and 8-month-old human infants , 1995, Vision Research.

[23]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[24]  T Troscianko,et al.  Color and luminance information in natural scenes. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Edward H. Adelson,et al.  Orthogonal Pyramid Transforms For Image Coding. , 1987, Other Conferences.

[26]  Arjen van der Schaaf,et al.  Natural image statistics and visual processing , 1998 .

[27]  Elmar Lang,et al.  Statistical Invariances in Artificial, Natural, and Urban Images , 1998 .

[28]  D. Field,et al.  Human discrimination of fractal images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[29]  P. Moulin Editorial Introducing T-IFS , 2006 .

[30]  Geoffrey E. Hinton,et al.  Learning Sparse Topographic Representations with Products of Student-t Distributions , 2002, NIPS.

[31]  R. Voss Random Fractal Forgeries , 1985 .

[32]  Hyvarinen Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation , 1999, Neural computation.

[33]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[34]  Richard G. Baraniuk,et al.  ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems , 2004, IEEE Transactions on Signal Processing.

[35]  T. W. Lee,et al.  Chromatic structure of natural scenes. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Sundaresh Ram,et al.  Removing Camera Shake from a Single Photograph , 2009 .

[37]  D. Tolhurst,et al.  Both the phase and the amplitude spectrum may determine the appearance of natural images , 1993, Vision Research.

[38]  Mateu Sbert,et al.  Benford's Law for Natural and Synthetic Images , 2005, CAe.

[39]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[40]  F. Kingdom,et al.  Precision, accuracy, and range of perceived achromatic transparency. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[41]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[42]  Joost van de Weijer,et al.  Color constancy based on the Grey-edge hypothesis , 2005, IEEE International Conference on Image Processing 2005.

[43]  Brian V. Funt,et al.  Is Machine Colour Constancy Good Enough? , 1998, ECCV.

[44]  Shih-Fu Chang,et al.  Physics-motivated features for distinguishing photographic images and computer graphics , 2005, ACM Multimedia.

[45]  Roland Baddeley,et al.  An efficient code in V1? , 1996, Nature.

[46]  Eero P. Simoncelli 4.7 – Statistical Modeling of Photographic Images , 2005 .

[47]  E. Adelson,et al.  Image statistics and the perception of surface qualities , 2007, Nature.

[48]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[49]  Garrett M. Johnson,et al.  Color Imaging: Fundamentals and Applications , 2008 .

[50]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[51]  Stephen Lin,et al.  Single-image vignetting correction using radial gradient symmetry , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Siwei Lyu,et al.  How realistic is photorealistic? , 2005, IEEE Transactions on Signal Processing.

[53]  Aapo Hyvärinen,et al.  Estimating Markov Random Field Potentials for Natural Images , 2009, ICA.

[54]  V A Billock,et al.  Evidence of spatial and temporal channels in the correlational structure of human spatiotemporal contrast sensitivity. , 1996, The Journal of physiology.

[55]  E. J. Stollnitz,et al.  Wavelets for Computer Graphics : A Primer , 1994 .

[56]  J. A. Wise,et al.  Perceptual and physiological responses to the visual complexity of fractal patterns. , 2005, Nonlinear dynamics, psychology, and life sciences.

[57]  D J Field,et al.  Local Contrast in Natural Images: Normalisation and Coding Efficiency , 2000, Perception.

[58]  Stephane J. M. Rainville,et al.  Spatial-scale contribution to the detection of mirror symmetry in fractal noise. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  Michael J. Black,et al.  Fields of Experts , 2009, International Journal of Computer Vision.

[60]  Kevin E. Spaulding,et al.  Color processing in digital cameras , 1998, IEEE Micro.

[61]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[62]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[63]  David Salesin,et al.  Wavelets for computer graphics: theory and applications , 1996 .

[64]  D. Ruderman The statistics of natural images , 1994 .

[65]  Wei Su,et al.  A generalized Benford's law for JPEG coefficients and its applications in image forensics , 2007, Electronic Imaging.

[66]  G. J. Burton,et al.  Color and spatial structure in natural scenes. , 1987, Applied optics.

[67]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[68]  Va Billock,et al.  What visual discrimination of fractal textures can tell us about discrimination of camouflaged targets , 2009 .

[69]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[70]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[71]  Jeffrey A. Sloan,et al.  Spatial frequency analysis of the visual environment: Anisotropy and the carpentered environment hypothesis , 1978, Vision Research.

[72]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[73]  D W Cunningham,et al.  Perception of spatiotemporal random fractals: an extension of colorimetric methods to the study of dynamic texture. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[74]  Donald S. Fussell,et al.  Computer rendering of stochastic models , 1982, Commun. ACM.

[75]  Oliver Deussen,et al.  Digital Design of Nature - Computer Generated Plants and Organics , 2010, X.media.publishing.

[76]  T W Cronin,et al.  Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[77]  Aapo Hyvärinen,et al.  Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation , 1999, Neural Computation.

[78]  F. Campbell,et al.  A comparison of threshold and suprathreshold appearance of gratings with components in the low and high spatial frequency range , 1978, The Journal of physiology.

[79]  Josiane Zerubia,et al.  Estimation of blur and noise parameters in remote sensing , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[80]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[81]  J. Cutting,et al.  Fractal curves and complexity , 1987, Perception & psychophysics.

[82]  Christian Wallraven,et al.  Image Statistics for Clustering Paintings According to their Visual Appearance , 2009, CAe.

[83]  Jinggang Huang Image Statistics for the British Aerospace Segmented Database , 1999 .

[84]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[86]  Eero P. Simoncelli Modeling the joint statistics of images in the wavelet domain , 1999, Optics & Photonics.

[87]  J. Kelso,et al.  Fractal time and 1/ f spectra in dynamic images and human vision , 2001 .

[88]  C. Redies,et al.  Statistical regularities in art: Relations with visual coding and perception , 2010, Vision Research.

[89]  R O Dror,et al.  Accuracy of velocity estimation by Reichardt correlators. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[90]  A. Abadpour,et al.  A fast and efficient fuzzy color transfer method , 2004, Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004..

[91]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[92]  Erik Reinhard,et al.  Natural image statistics for computer graphics , 2001 .

[93]  C C Chiao,et al.  Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[94]  Bernice E. Rogowitz,et al.  Shape perception and low-dimension fractal boundary contours , 1990, Other Conferences.

[95]  R. Sekuler,et al.  Contrast sensitivity throughout adulthood , 1982, Vision Research.

[96]  Eero P. Simoncelli,et al.  Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization , 2009, Neural Computation.

[97]  Andrew B. Watson,et al.  Separability of Spatiotemporal Spectra of Image Sequences , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[98]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[99]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[100]  Prashant Parikh A Theory of Communication , 2010 .

[101]  Bryan C. Russell,et al.  Exploiting the sparse derivative prior for super-resolution , 2003 .

[102]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[103]  Florin Cutzu,et al.  Differences of edge properties in photographs and paintings , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[104]  P O Hoyer,et al.  Independent component analysis applied to feature extraction from colour and stereo images , 2000, Network.

[105]  Shohreh Kasaei,et al.  An efficient PCA-based color transfer method , 2007, J. Vis. Commun. Image Represent..

[106]  Simon B. Laughlin,et al.  The Role of Natural Image Statistics in Biological Motion Estimation , 2000, Biologically Motivated Computer Vision.

[107]  Edward H. Adelson,et al.  Statistics of real-world illumination , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[108]  Charlie C. L. Wang,et al.  Gradient based image completion by solving the Poisson equation , 2007, Comput. Graph..

[109]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[110]  David H. Foster,et al.  Role of second- and third-order statistics in the discriminability of natural images , 1997 .

[111]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[112]  M. Thomson,et al.  Visual coding and the phase structure of natural scenes. , 1999, Network.

[113]  Alex Pentland,et al.  On the Imaging of Fractal Surfaces , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[114]  E. B. Baum,et al.  Internal representations for associative memory , 1988, Biological Cybernetics.

[115]  Assaf Zomet,et al.  Learning to Perceive Transparency from the Statistics of Natural Scenes , 2002, NIPS.

[116]  Kim Steenstrup Pedersen,et al.  The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003, International Journal of Computer Vision.

[117]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[118]  Zhi-Hong Mao,et al.  Function approximation with spiked random networks , 1999, IEEE Trans. Neural Networks.

[119]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[120]  Ron O Dror,et al.  Statistical characterization of real-world illumination. , 2004, Journal of vision.

[121]  A. Watson,et al.  A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex , 1989, IEEE Transactions on Biomedical Engineering.

[122]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..

[123]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[124]  John W. Fisher,et al.  ICA Using Spacings Estimates of Entropy , 2003, J. Mach. Learn. Res..

[125]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[126]  Robert Sekuler,et al.  Structural modeling of spatial vision , 1984, Vision Research.

[127]  H. Barlow The exploitation of regularities in the environment by the brain. , 2001, The Behavioral and brain sciences.

[128]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[129]  P. Bex,et al.  Motion Sharpening: Evidence for the Addition of High Spatial Frequencies to the Effective Neural Image , 1996, Vision Research.

[130]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[131]  J. M. Hughes,et al.  Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder , 2010, Proceedings of the National Academy of Sciences.

[132]  M. Thomson Beats, kurtosis and visual coding , 2001, Network.

[133]  Arnold W. M. Smeulders,et al.  c ○ 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. A Six-Stimulus Theory for Stochastic Texture , 2002 .

[134]  Ranjan Acharyya,et al.  A New Approach for Blind Source Separation of Convolutive Sources - Wavelet Based Separation Using Shrinkage Function , 2008 .

[135]  Eero P. Simoncelli,et al.  Image denoising via adjustment of wavelet coefficient magnitude correlation , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[136]  D. Field,et al.  Mapping the similarity space of paintings: Image statistics and visual perception , 2010 .

[137]  Chang-Hsing Lee,et al.  Scene-based event detection for baseball videos , 2007, J. Vis. Commun. Image Represent..

[138]  David Mumford,et al.  Statistics of range images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[139]  D. Field,et al.  Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes , 1997, Vision Research.

[140]  Chuan Zhou,et al.  Gradient Based Image Completion by Solving Poisson Equation , 2005, PCM.

[141]  Eero P. Simoncelli Statistical models for images: compression, restoration and synthesis , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[142]  Eero P. Simoncelli,et al.  Texture characterization via joint statistics of wavelet coefficient magnitudes , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[143]  K. Ryan,et al.  Research involving children. , 1977, Scientific American.

[144]  Gary S. Robinson Standards Give You Control , 1998, IEEE Micro.

[145]  A B Watson,et al.  Efficiency of a model human image code. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[146]  D. Tolhurst,et al.  Amplitude spectra of natural images. , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[147]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2013, The Kluwer international series in engineering and computer science.

[148]  T. Caelli Visual Perception: Theory and Practice , 1981 .

[149]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[150]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[151]  Erik Reinhard,et al.  Color Transfer between Images , 2001, IEEE Computer Graphics and Applications.

[152]  J. H. van Hateren,et al.  Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.

[153]  Theo Gevers,et al.  Color Constancy using Natural Image Statistics , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[154]  Erik Reinhard,et al.  Statistical regularities in low and high dynamic range images , 2010, APGV '10.

[155]  M. Webster,et al.  Contrast adaptation and the spatial structure of natural images. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[156]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[157]  Eero P. Simoncelli,et al.  Reducing statistical dependencies in natural signals using radial Gaussianization , 2008, NIPS.

[158]  Assaf Zomet,et al.  Learning how to inpaint from global image statistics , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[159]  Anat Levin,et al.  Blind Motion Deblurring Using Image Statistics , 2006, NIPS.

[160]  V. Billock Neural acclimation to 1/ f spatial frequency spectra in natural images transduced by the human visual system , 2000 .

[161]  Tu,et al.  Quantum spherical models for dirty phase transitions. , 1994, Physical review letters.

[162]  A B Watson,et al.  Perceptual-components architecture for digital video. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[163]  Erik Reinhard,et al.  Second order image statistics in computer graphics , 2004, APGV '04.

[164]  Erik Reinhard,et al.  Real-time color blending of rendered and captured video , 2004 .

[165]  J. H. Hateren,et al.  Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation , 1992, Journal of Comparative Physiology A.

[166]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[167]  D. Tolhurst,et al.  Discrimination of changes in the second-order statistics of natural and synthetic images , 1994, Vision Research.

[168]  W. Geisler Visual perception and the statistical properties of natural scenes. , 2008, Annual review of psychology.

[169]  Bruno A. Olshausen,et al.  The statistics of style , 2022 .

[170]  Denis Zorin,et al.  Real-time rendering of textures with feature curves , 2008, TOGS.

[171]  Takashi Totsuka,et al.  Combining frequency and spatial domain information for fast interactive image noise removal , 1996, SIGGRAPH.

[172]  M. White,et al.  A New Effect of Pattern on Perceived Lightness , 1979, Perception.

[173]  Catherine E. Carr,et al.  Evolution of Time Coding Systems , 1999, Neural Computation.

[174]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[175]  Peter Földiák,et al.  SPARSE CODING IN THE PRIMATE CORTEX , 2002 .

[176]  Eero P. Simoncelli,et al.  Image compression via joint statistical characterization in the wavelet domain , 1999, IEEE Trans. Image Process..

[177]  Graham D. Finlayson,et al.  Shades of Gray and Colour Constancy , 2004, CIC.