From Random Graph to Small World by Wandering

Numerous studies show that most known real-world complex networks share similar properties in their connectivity and degree distribution. They are called small worlds. This article gives a method to turn random graphs into Small World graphs by the dint of random walks.

[1]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[2]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[3]  J. Montoya,et al.  Small world patterns in food webs. , 2002, Journal of theoretical biology.

[4]  Ramesh Govindan,et al.  Heuristics for Internet map discovery , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[5]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[6]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[7]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[9]  Eli Upfal,et al.  The Web as a graph , 2000, PODS.

[10]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[11]  Béla Bollobás,et al.  Random Graphs , 1985 .

[12]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[13]  Jean-Loup Guillaume,et al.  Complex Network Metrology , 2005, Complex Syst..

[14]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[15]  G. W. Stewart Perron-Frobenius theory: a new proof of the basics , 1994 .

[16]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[17]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[18]  Michel L. Goldstein,et al.  Problems with fitting to the power-law distribution , 2004, cond-mat/0402322.

[19]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[20]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[21]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[22]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[23]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[24]  Ramon Ferrer i Cancho,et al.  The small world of human language , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.