Wall Pressure Fluctuations of Turbulent Flow Over Backward-Facing Step with and Without Entrainment: Microphone Array Measurement

Wall pressure fluctuations in turbulent boundary layer flow over backward-facing step with and without entrainment were investigated. Digital array pressure sensors and multi-arrayed microphones were employed to acquire the time-averaged static pressure and fluctuating pressure, respectively. The differences of two flows were scrutinized in terms of static pressure characteristics, pressure fluctuations, cross-correlation and coherence of wall pressure. Introduction of the entrainment increased scale of large-scale vortical structure and reduced its convection velocity. However, shedding frequency of large-scale vortical structures was found to be the same for both flows.