Some recent theoretical advances in the understanding of the catalytic activity of Au

Abstract We present a small review of recent density-functional-theory (DFT) studies of the reactivity towards CO oxidation of supported Au nano-particles. The possible structure of the periphery of the interface between a Au particle and an oxide support is discussed. A certain structure, in which low coordinated Au atoms are overhanging the support without binding directly to the oxide atoms, is argued to be prototypical of medium-sized Au particles. This structure is shown to be particularly active both at the edges and at the corners of Au particles. Examples from the literature of Au systems supported on MgO(1 0 0) and rutile-TiO2(1 1 0) are reviewed and new data are given for the reactivity of facet, edge, and corner sites of a Au34 cluster supported on MgO(1 0 0). On the non-reducible oxide support, MgO(1 0 0), the CO oxidation is found to occur via CO adsorption to the Au particles and subsequent CO-promoted O2 capture and formation of a CO·O2 reaction intermediate complex. On the reducible oxide support, TiO2(1 1 0), the O2 is found to adsorb independently of the CO. However, on this support, the reaction still proceeds via CO·O2 formation rather than via O2 dissociation.

[1]  J. Gardea-Torresdey,et al.  Structure shape and stability of nanometric sized particles , 2001 .

[2]  J. Nørskov,et al.  Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). , 2003, Physical review letters.

[3]  Jürgen Hafner,et al.  Molecular Precursors in the Dissociative Adsorption of O 2 on Pt(111) , 1997 .

[4]  H. Freund,et al.  Do quantum size effects control CO adsorption on gold nanoparticles? , 2004, Angewandte Chemie.

[5]  B. Hammer,et al.  Promoting and poisoning effects of Na and Cl coadsorption on CO oxidation over MgO-supported Au nanoparticles , 2004 .

[6]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[7]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[8]  C. Louis,et al.  Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea , 2004 .

[9]  Sungsik Lee,et al.  CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. , 2004, Journal of the American Chemical Society.

[10]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[11]  Martin Muhler,et al.  CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction , 2001 .

[12]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[13]  John P. Perdew,et al.  Molecular and solid‐state tests of density functional approximations: LSD, GGAs, and meta‐GGAs , 1999 .

[14]  Hannu Häkkinen,et al.  Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. , 2002, Physical review letters.

[15]  R. Whetten,et al.  Low-temperature activation of molecular oxygen by gold clusters: a stoichiometric process correlated to electron affinity , 2000 .

[16]  S. Ito,et al.  HELIX-COIL TRANSITION OF POLY-α,L-GLUTAMIC ACID IN AQUEOUS SOLUTION STUDIED BY THE DISSOCIATION FIELD EFFECT RELAXATION METHOD , 1973 .

[17]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[18]  I. Stensgaard,et al.  Electron Transfer-Induced Dynamics of Oxygen Molecules on the TiO2(110) Surface , 2004, Science.

[19]  R. Stroud,et al.  Using Three Dimensions in Catalytic Mesoporous Nanoarchitectures , 2002 .

[20]  C. Mullins,et al.  Reaction of CO with molecularly chemisorbed oxygen on TiO2-supported gold nanoclusters. , 2004, Journal of the American Chemical Society.

[21]  Christoph R. Jacob,et al.  The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations , 2002 .

[22]  J. Hrbek,et al.  ACTIVATION OF AU NANOPARTICLES ON OXIDE SURFACES: REACTION OF SO2 WITH AU/MGO(100) , 2003 .

[23]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[24]  Renald Schaub,et al.  Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface , 2002, Science.

[25]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[26]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .

[27]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[28]  A. Selloni,et al.  Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study , 2002 .

[29]  Manos Mavrikakis,et al.  Why Au and Cu Are More Selective Than Pt for Preferential Oxidation of CO at Low Temperature , 2004 .

[30]  G. Mills,et al.  Oxygen adsorption on Au clusters and a rough Au(111) surface: The role of surface flatness, electron confinement, excess electrons, and band gap , 2003 .

[31]  C. Mullins,et al.  Evidence for molecularly chemisorbed oxygen on TiO2 supported gold nanoclusters and Au(111). , 2004, Journal of the American Chemical Society.

[32]  S. Nayak,et al.  A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters , 2002 .

[33]  U. Landman,et al.  Interaction of O2 with Gold Clusters: Molecular and Dissociative Adsorption , 2003 .

[34]  G. Ozin,et al.  A metal atom model for the oxidation of carbon monoxide to carbon dioxide. The gold atom-carbon monoxide-dioxygen reaction and the gold atom-carbon dioxide reaction , 1977 .

[35]  U. Landman,et al.  Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. , 2003, Angewandte Chemie.

[36]  B. Hammer,et al.  Active role of oxide support during CO oxidation at Au/MgO. , 2003, Physical review letters.

[37]  Bjørk Hammer,et al.  Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100) , 2004 .

[38]  M. José-Yacamán,et al.  Structure determination of small particles by HREM imaging: Theory and experiment , 1998 .

[39]  W. L Winterbottom,et al.  Equilibrium shape of a small particle in contact with a foreign substrate , 1967 .

[40]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[41]  G. Mills,et al.  The adsorption of molecular oxygen on neutral and negative Aun clusters (n=2–5) , 2002 .

[42]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[43]  J. Nørskov,et al.  CO oxidation on rutile-supported au nanoparticles. , 2005, Angewandte Chemie.

[44]  J. Nørskov,et al.  Making gold less noble , 2000 .

[45]  Ali Alavi,et al.  Catalytic role of gold in gold-based catalysts: a density functional theory study on the CO oxidation on gold. , 2002, Journal of the American Chemical Society.

[46]  Toshio Hayashi,et al.  Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen , 1998 .

[47]  B. Hammer,et al.  Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). , 2004, The Journal of chemical physics.

[48]  T. Shido,et al.  Highly Selective Catalytic Reduction of NO by H2over Au0and Au(I) Impregnated in NaY Zeolite Catalysts , 1996 .

[49]  A. Maiti,et al.  Activation of gold on titania: adsorption and reaction of SO(2) on Au/TiO(2)(110). , 2002, Journal of the American Chemical Society.

[50]  B. Hammer,et al.  Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): a density functional theory study. , 2004, The Journal of chemical physics.

[51]  G. Tendeloo,et al.  Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations , 2000 .

[52]  R.J.H. Grisel,et al.  Catalysis by Gold Nanoparticles , 2002 .

[53]  R. Whetten,et al.  Coadsorption of CO and O(2) on selected gold clusters: evidence for efficient room-temperature CO(2) generation. , 2002, Journal of the American Chemical Society.

[54]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[55]  Xue-qing Gong,et al.  Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. , 2003, Physical review letters.

[56]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[57]  Ali Alavi,et al.  CO oxidation on Pt(111): An ab initio density functional theory study , 1998 .

[58]  M. Mavrikakis,et al.  Adsorption and Dissociation of O2 on Gold Surfaces: Effect of Steps and Strain , 2003 .

[59]  C. Mullins,et al.  Cryogenic CO oxidation on TiO(2)-supported gold nanoclusters precovered with atomic oxygen. , 2003, Journal of the American Chemical Society.

[60]  F. Schüth,et al.  A systematic study of the synthesis conditions for the preparation of highly active gold catalysts , 2002 .

[61]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[62]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.