Optimization study of xanthan gum production using response surface methodology

Abstract The cultural conditions for xanthan gum production by Xanthomonas campestris were investigated and optimized by response surface methodology, to maximize cell and xanthan production in batch experiments using a synthetic broth (Luria-Bertani plus glucose, LBG) without pH control. The individual and interactive effects of three independent variables (agitation rate (100–600 rpm), temperature (25–35 °C), time of cultivation (24–72 h)) on xanthan gum and biomass production were studied, using a face-centered composite design of experiments. A second ordered polynomial model was fitted and optimum conditions were estimated. Overall optimization allowed us to point out an optimal range of the three independent variables. Optimal xanthan gum production was found at 600 rpm 30 °C at 72 h and biomass at 600 rpm, 25 °C at 72 h. Furthermore, the consumption of substrate (glucose) and the variation of pH during the fermentation as well as the molecular weight and the pyruvate content of the formed polysaccharide are reported.

[1]  A. Schumpe,et al.  Xanthan production in bubble column and air‐lift reactors , 1992, Biotechnology and bioengineering.

[2]  D. Kyriakidis,et al.  Kinetics of xanthan gum production from whey by constructed strains of Xanthomonas campestris in batch fermentations , 1997 .

[3]  M. Deaton,et al.  Response Surfaces: Designs and Analyses , 1989 .

[4]  A. Nienow,et al.  Enhancing Xanthan Fermentations by Different Modes of Glucose Feeding , 1998, Biotechnology progress.

[5]  Amanullah,et al.  Agitator speed and dissolved oxygen effects in xanthan fermentations , 1998, Biotechnology and bioengineering.

[6]  D. Kyriakidis,et al.  Xanthan gum and ethanol production by Xanthomonas campestris and Zymomonas mobilis from peach pulp , 2004, Biotechnology Letters.

[7]  C. Dussap,et al.  Modelling Xanthomonas campestris batch fermentations in a bubble column , 1989, Biotechnology and bioengineering.

[8]  Barbara Katzbauer,et al.  Properties and applications of xanthan gum , 1998 .

[9]  A. Jana,et al.  Xanthan biosynthesis in continuous culture: Citric acid as an energy source , 1995 .

[10]  F. García-Ochoa,et al.  Simulation of xanthan gum production by a chemically structured kinetic model , 1996 .

[11]  E. Galindo,et al.  Power consumption of three impeller combinations in mixing xanthan fermentation broths , 1992 .

[12]  Mangesh D. Kapadi,et al.  Productivity Improvement in Xanthan Gum Fermentation Using Multiple Substrate Optimization , 2008, Biotechnology progress.

[13]  F. García-Ochoa,et al.  Xanthan gum production: An unstructured kinetic model , 1995 .

[14]  M. Sheintuch,et al.  Mass transfer, batch and continuous kinetics, in a luminous strain of Xanthomonas campestris , 1988 .

[15]  A. Schumpe,et al.  Modeling of batchwise xanthan production , 2009 .

[16]  Don Edwards,et al.  How to Apply Response Surface Methodology , 1991 .

[17]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[18]  Shangtian Yang,et al.  Kinetics and modeling of temperature effects on batch xanthan gum fermentation , 1991, Biotechnology and bioengineering.

[19]  Sureshkumar,et al.  Oxygen supply without gas-liquid film resistance to xanthomonas campestris cultivation , 1998, Biotechnology and bioengineering.

[20]  S. Paras,et al.  Xanthan production by Xanthomonas campestris in batch cultures , 2001 .

[21]  A. Schumpe,et al.  The influence of agitation rate on xanthan production by Xanthomonas campestris. , 1989, Biotechnology and bioengineering.

[22]  F. García-Ochoa,et al.  Metabolic structured kinetic model for xanthan production , 1998 .

[23]  María J. López,et al.  Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. , 2001, Water research.

[24]  C. Vendruscolo,et al.  Screening among 18 novel strains of Xanthomonas campestris pv pruni , 2001 .

[25]  F. García-Ochoa,et al.  Oxygen transfer and uptake rates during xanthan gum production. , 2000, Enzyme and microbial technology.

[26]  David F. Ollis,et al.  Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation , 1980 .

[27]  Dardo Marqués,et al.  Optimal control of a batch bioreactor for the production of xanthan gum , 2001 .

[28]  H. Rodríguez,et al.  Detection of Xanthomonas campestris mutants with increased xanthan production , 1997, Journal of Industrial Microbiology and Biotechnology.

[29]  E. Galindo,et al.  Prediction of xanthan fermentation development by a model linking kinetics, power drawn and mixing , 1998 .

[30]  Y. Kawase,et al.  Gas hold-up and oxygen transfer in three-phase external-loop airlift bioreactors : Non-Newtonian fermentation broths , 1996 .

[31]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[32]  J. Casas,et al.  Xanthan gum: production, recovery, and properties. , 2000, Biotechnology Advances.

[33]  J. Roseiro,et al.  Interactive Effects of pH and Temperature on Cell Growth and Polymer Production by Xanthomonas campestris , 1995 .

[34]  J. Roseiro,et al.  Production of xanthan by in-flow cultures of Xanthomonas campestris , 1993, Applied Microbiology and Biotechnology.

[35]  Shangtian Yang,et al.  Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris , 1990, Biotechnology and bioengineering.

[36]  F. Létisse,et al.  Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources , 2001, Applied Microbiology and Biotechnology.

[37]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[38]  S. Harcum,et al.  Xanthan gum production from waste sugar beet pulp , 1999 .

[39]  G. Skaracis,et al.  Optimization of xanthan gum production by Xanthomonas campestris grown in molasses , 2003 .

[40]  M. C. Vargas-García,et al.  Properties of xanthan obtained from agricultural wastes acid hydrolysates , 2004 .

[41]  D. Kyriakidis,et al.  Xanthan gum production by Xanthomonas campestris w.t. fermentation from chestnut extract , 1999, Applied biochemistry and biotechnology.

[42]  Amanullah,et al.  The influence of impeller type in pilot scale xanthan fermentations , 1998, Biotechnology and bioengineering.

[43]  V. E. Santos,et al.  Nutritional study of Xanthomonas campestris in xanthan gum production by factorial design of experiments , 1992 .

[44]  F. García-Ochoa,et al.  Mass transfer coefficient in stirred tank reactors for xanthan gum solutions , 1998 .

[45]  F. García-Ochoa,et al.  Chemical structured kinetic model for xanthan production , 2004 .

[46]  N. Harding,et al.  Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris , 1987, Journal of bacteriology.