Computation of the General $(J,J^{\prime})$-Lossless Factorization
暂无分享,去创建一个
[1] Delin Chu,et al. The extended J-spectral factorization for descriptor systems , 2008, Autom..
[2] Cristian Oara. Constructive solutions to spectral and inner-outer factorizations with respect to the disk , 2005, Autom..
[3] Alan J. Laub,et al. Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.
[4] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[5] Peter Benner,et al. Numerical Methods for Linear Quadratic and H∞ Control Problems , 1999 .
[6] Michael Green,et al. A J-Spectral Factorization Approach to H∞ Control , 1990 .
[7] H. Kwakernaak,et al. Polynomial J-spectral factorization , 1994, IEEE Trans. Autom. Control..
[8] Bo Kågström,et al. RGSD an algorithm for computing the Kronecker structure and reducing subspaces of singular A-lB pencils , 1986 .
[9] H. Rosenbrock,et al. State-space and multivariable theory, , 1970 .
[10] Daniel W. C. Ho,et al. Computation of the (J, J')-Lossless Factorization for General Rational Matrices , 2005, SIAM J. Control. Optim..
[11] Vasile Sima,et al. Solving Algebraic Riccati Equations with SLICOT , 2003 .
[12] G. Cohen,et al. A J-spectral factorization approach to control , 1990 .
[13] C. Oar. Constructive solutions to spectral and inner-outer factorizations with respect to the disk , 2005 .
[14] Ruth F. Curtain,et al. Analytic Solutions of Matrix Riccati Equations with Analytic Coefficients , 2010, SIAM J. Matrix Anal. Appl..
[15] Volker Mehrmann,et al. Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .
[16] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[17] Hidenori Kimura,et al. (J,J′)-lossless factorization for descriptor systems , 1994 .
[18] Polynomial spectral factorization with complex coefficients , 2002 .
[19] Sabine Van Huffel,et al. SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .
[20] Vladimir B. Larin,et al. Algorithm of J-spectral factorization of polynomial matrices , 1997, Autom..
[21] Tohru Katayama,et al. A non‐standard J‐spectral factorization of rational matrices via zero compensator approach , 2003 .
[22] Peter Benner,et al. Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..
[23] Hidenori Kimura,et al. Singular (J, J')-lossless factorization for strictly proper functions , 1994 .
[24] T. Kailath,et al. A generalized state-space for singular systems , 1981 .
[25] András Varga,et al. Minimal Degree Coprime Factorization of Rational Matrices , 1999, SIAM J. Matrix Anal. Appl..
[26] Vasile Sima,et al. Algorithms for Linear-Quadratic Optimization , 2021 .
[27] S. Van Huffel,et al. SLICOT and control systems numerical software packages , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.
[28] Jovan D. Stefanovski. Numerical J-spectral factorization of general para-hermitian matrices , 2008, Syst. Control. Lett..
[29] Cristian Oară,et al. Minimal indices cancellation and rank revealing factorizations for rational matrix functions , 2009 .
[30] P. Dooren,et al. An improved algorithm for the computation of structural invariants of a system pencil and related geometric aspects , 1997 .
[31] F. R. Gantmakher. The Theory of Matrices , 1984 .
[32] C. Oara,et al. Generalized Riccati Theory and Robust Control. A Popov Function Approach , 1999 .
[33] Thilo Penzl,et al. Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..
[34] András Varga,et al. Computation of general inner-outer and spectral factorizations , 2000, IEEE Trans. Autom. Control..
[35] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.
[36] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.
[37] Fernando Paganini,et al. Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..