High-throughput generation, optimization and analysis of genome-scale metabolic models

Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking ∼48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.

[1]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[2]  A. Douglas,et al.  Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. , 1998, Annual review of entomology.

[3]  J. Keasling,et al.  Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. , 1998, Biotechnology and bioengineering.

[4]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[5]  Minoru Kanehisa,et al.  The KEGG database. , 2002, Novartis Foundation symposium.

[6]  Peter D. Karp,et al.  The MetaCyc Database , 2002, Nucleic Acids Res..

[7]  G. Church,et al.  Genome-Scale Metabolic Model of Helicobacter pylori 26695 , 2002, Journal of bacteriology.

[8]  Susumu Goto,et al.  The KEGG databases at GenomeNet , 2002, Nucleic Acids Res..

[9]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[10]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[11]  C. Ouzounis,et al.  Automated metabolic reconstruction for Methanococcus jannaschii. , 2004, Archaea.

[12]  K. Konstantinidis,et al.  Trends between gene content and genome size in prokaryotic species with larger genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Ren Zhang,et al.  DEG: a database of essential genes. , 2004, Nucleic acids research.

[14]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[15]  Rick L. Stevens,et al.  The SEED: a peer-to-peer environment for genome annotation , 2004, CACM.

[16]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[17]  Jochen Förster,et al.  Modeling Lactococcus lactis using a genome-scale flux model , 2005, BMC Microbiology.

[18]  Rick Stevens,et al.  Essential genes on metabolic maps. , 2006, Current opinion in biotechnology.

[19]  John Gould,et al.  Toward the automated generation of genome-scale metabolic networks in the SEED , 2007, BMC Bioinformatics.

[20]  Bas Teusink,et al.  Accelerating the reconstruction of genome-scale metabolic networks , 2006, BMC Bioinformatics.

[21]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[22]  Adam M. Feist,et al.  Modeling methanogenesis with a genome‐scale metabolic reconstruction of Methanosarcina barkeri , 2006 .

[23]  M. Ziman,et al.  Phenotype Microarray Profiling of Staphylococcus aureus menD and hemB Mutants with the Small-Colony-Variant Phenotype , 2006, Journal of bacteriology.

[24]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[25]  Vincent Fromion,et al.  Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis , 2008, BMC Systems Biology.

[26]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[27]  B. Palsson,et al.  Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput Phenotyping and Gene Essentiality Data* , 2007, Journal of Biological Chemistry.

[28]  Bernhard O. Palsson,et al.  Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets , 2007 .

[29]  G. Schoolnik,et al.  Genomic and Phenotypic Diversity of Coastal Vibrio cholerae Strains Is Linked to Environmental Factors , 2007, Applied and Environmental Microbiology.

[30]  Matthew D. Jankowski,et al.  Group contribution method for thermodynamic analysis of complex metabolic networks. , 2008, Biophysical journal.

[31]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[32]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[33]  Vincent Schächter,et al.  Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data , 2008, BMC Systems Biology.

[34]  P. Bork,et al.  Impact of Genome Reduction on Bacterial Metabolism and Its Regulation , 2009, Science.

[35]  Vinay Satish Kumar,et al.  GrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions , 2009, PLoS Comput. Biol..

[36]  Vinay Satish Kumar,et al.  A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189 , 2009, PLoS Comput. Biol..

[37]  Rick L Stevens,et al.  iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations , 2009, Genome Biology.

[38]  H. Mori,et al.  Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism , 2009, Molecular systems biology.

[39]  B. Bochner Global phenotypic characterization of bacteria , 2008, FEMS microbiology reviews.

[40]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .