Control performance assessment for nonlinear systems

Abstract Assessing the quality of existing industrial control loops, or comparing between two alternative controller designs is becoming an important routine auditing task for the control engineer. While most of the research and commercial activity in CPA has been applied to linear systems to date, those researchers investigating nonlinear systems fall into one of two groups. The first group focussed on the diagnosis of a common specific nonlinearity, namely valve stiction [1] , [2] , [3] , while the second group tried to establish the minimum variance performance lower bound (MVPLB) [4] , [5] , [6] , [7] , [8] . In this paper we will propose a new CPA performance index for general nonlinear models based on an ANOVA-like variance decomposition method. The results of two simulation examples illustrate that the proposed methodology is efficient and accurate.

[1]  Emanuel Parzen,et al.  Stochastic Processes , 1962 .

[2]  Ronald K. Pearson,et al.  Nonlinear process identification , 1997 .

[3]  Su Whan Sung,et al.  Improved system identification method for Hammerstein-Wiener processes , 2008 .

[4]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[5]  A. A. Desrochers,et al.  Modeling of nonlinear discrete-time systems from input-output data , 1988, Autom..

[6]  Nina F. Thornhill,et al.  Advances and new directions in plant-wide disturbance detection and diagnosis , 2007 .

[7]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[8]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[9]  David C. Cox,et al.  An Analytic Method for Uncertainty Analysis of Nonlinear Output Functions, with Applications to Fault-Tree Analysis , 1982, IEEE Transactions on Reliability.

[10]  Enrique Baeyens,et al.  Identification of block-oriented nonlinear systems using orthonormal bases , 2004 .

[11]  Nina F. Thornhill,et al.  Automatic detection and quantification of stiction in control valves , 2006 .

[12]  I. J. Leontaritis,et al.  Model selection and validation methods for non-linear systems , 1987 .

[13]  Mohieddine Jelali,et al.  An overview of control performance assessment technology and industrial applications , 2006 .

[14]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[15]  M. Grimble Non-linear generalized minimum variance feedback, feedforward and tracking control , 2005, Autom..

[16]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[17]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[18]  Sirish L. Shah,et al.  Performance Assessment of Control Loops: Theory and Applications , 1999 .

[19]  C. T. Seppala,et al.  A review of performance monitoring and assessment techniques for univariate and multivariate control systems , 1999 .

[20]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[21]  S. Joe Qin,et al.  Control performance monitoring — a review and assessment , 1998 .

[22]  Stephen A. Billings,et al.  International Journal of Control , 2004 .

[23]  W. L. Bialkowski Dreams versus reality: a view from both sides of the gap: manufacturing excellence with come only through engineering excellence , 1993 .

[24]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[25]  Feng Wan,et al.  A neural network approach to control performance assessment , 2008, Int. J. Intell. Comput. Cybern..

[26]  M. Medeiros,et al.  Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination , 2005 .

[27]  Biao Huang,et al.  Performance Assessment of Control Loops , 1999 .

[28]  M. Korenberg Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithm , 2006, Annals of Biomedical Engineering.

[29]  G. R. Averin The Hammerstein–Wiener Model for Identification of Stochastic Systems , 2003 .

[30]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[31]  I. Sobol,et al.  Sensitivity Measures, ANOVA-like Techniques and the Use of Bootstrap , 1997 .

[32]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[33]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[34]  J. Macgregor,et al.  Monitoring and Diagnosing Process Control Performance: The Single-Loop Case , 1991, 1991 American Control Conference.

[35]  Alexander Horch A simple method for detection of stiction in control valves , 1999 .

[36]  Nina F. Thornhill,et al.  Diagnosis of poor control-loop performance using higher-order statistics , 2004, Autom..

[37]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[38]  Wei Yu,et al.  Parameter uncertainty effects on variance-based sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[39]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[40]  Wei Yu,et al.  Nonlinear control performance assessment in the presence of valve stiction , 2010 .

[41]  David I. Wilson,et al.  Eliminating Valve Stiction Nonlinearities for Control Performance Assessment , 2009 .

[42]  R. Pearson Discrete-time Dynamic Models , 1999 .

[43]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[44]  Ki H. Chon,et al.  Application of fast orthogonal search to linear and nonlinear stochastic systems , 2007, Annals of Biomedical Engineering.

[45]  T. Harris Assessment of Control Loop Performance , 1989 .

[46]  Howell Tong,et al.  Non-Linear Time Series , 1990 .

[47]  Thomas J. Harris,et al.  Variance decompositions of nonlinear-dynamic stochastic systems , 2010 .

[48]  Lennart Ljung,et al.  AN INTEGRATED SYSTEM IDENTIFICATION TOOLBOX FOR LINEAR AND NON-LINEAR MODELS , 2006 .

[49]  S. Billings,et al.  Self-tuning control of non-linear ARMAX models , 1990 .

[50]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[51]  M. Hinich Testing for Gaussianity and Linearity of a Stationary Time Series. , 1982 .

[52]  Thomas J. Harris,et al.  Controller assessment for a class of non-linear systems , 2007 .

[53]  Qingsheng Zheng,et al.  Volterra−Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit , 2004 .