DeBruijn Counting for Visualization Algorithms

We describe how to determine the number of cases that arise in visualization al- gorithms such as Marching Cubes by applying the deBruijn extension of Polya counting. This technique constructs a polynomial, using the cycle index, encoding the case counts that arise when a discrete function (or “color”) is evaluated at each vertex of a polytope. The technique can serve as a valuable aid in debugging visualization algorithms that extend Marching Cubes, Separating Surfaces, Interval Volumes, Sweeping Simplices, etc., to larger dimensions and to more colors.

[1]  Paul K. Stockmeyer,et al.  Counting cases in substitope algorithms , 2004, IEEE Transactions on Visualization and Computer Graphics.

[2]  Raghu Machiraju,et al.  A Novel Approach To Vortex Core Region Detection , 2002, VisSym.

[3]  Hans-Christian Hege,et al.  Weighted Labels for 3D Image Segmentation , 1998 .

[4]  George Pâolya,et al.  Applied Combinatorial Mathematics , 1964 .

[5]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[6]  H. Hege,et al.  A Generalized Marching Cubes Algorithm Based On Non-Binary Classifications , 1997 .

[7]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[8]  Roger Crawfis,et al.  Isosurfacing in higher dimensions , 2000 .

[9]  Gregory M. Nielson,et al.  Computing the separating surface for segmented data , 1997 .

[10]  David C. Banks,et al.  Counting cases in marching cubes: toward a generic algorithm for producing substitopes , 2003, IEEE Visualization, 2003. VIS 2003..

[11]  David C. Banks,et al.  Complex-valued contour meshing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[12]  de Ng Dick Bruijn Generalization of polya’s fundamental theorem in enumerative combinatorial analysis , 1959 .

[13]  Han-Wei Shen,et al.  Sweeping simplices: a fast iso-surface extraction algorithm for unstructured grids , 1995, Proceedings Visualization '95.

[14]  F. Harary,et al.  The power group enumeration theorem , 1966 .

[15]  G. Pólya,et al.  Combinatorial Enumeration Of Groups, Graphs, And Chemical Compounds , 1988 .

[16]  Frank Harary,et al.  A Survey of Graphical Enumeration Problems††Work supported in part by grants from the Air Force Office of Scientific Research and the National Science Foundation. , 1973 .

[17]  Steve Hill,et al.  Piecewise linear hypersurfaces using the marching cubes algorithm , 1999, Electronic Imaging.

[18]  G. Nielson,et al.  Interval volume tetrahedrization , 1997 .

[19]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[20]  de Ng Dick Bruijn Pólya's theory of counting , 1964 .