Structural, optical and charge density investigations on lead free Mn2+ doped Cs2NaBiCl6 double perovskite microcrystals

[1]  Tianchun Lang,et al.  Post-doping induced morphology evolution boosts Mn2+ luminescence in the Cs2NaBiCl6:Mn2+ phosphor. , 2022, Physical chemistry chemical physics : PCCP.

[2]  A. Rogach,et al.  Co-Doping of Cerium and Bismuth into Lead-Free Double Perovskite Cs2AgInCl6 Nanocrystals Results in Improved Photoluminescence Efficiency , 2021, ACS nanoscience Au.

[3]  Yutong Zhang,et al.  Transformation between the Dark and Bright Self-Trapped Excitons in Lead-Free Double-Perovskite Cs2NaBiCl6 under Pressure. , 2021, The journal of physical chemistry letters.

[4]  M. K. Kumar,et al.  Evolution of stability enhancement in organo-metallic halide perovskite photovoltaics-a review , 2021 .

[5]  Tong Cai,et al.  Synthesis of Lead-Free Cs2AgBiX6 (X = Cl, Br, I) Double Perovskite Nanoplatelets and Their Application in CO2 Photocatalytic Reduction. , 2021, Nano letters.

[6]  Jinju Zheng,et al.  Mn2+-doped Cs2NaInCl6 double perovskites and their photoluminescence properties , 2021, Journal of Materials Science.

[7]  K. S. Venkatesh,et al.  Unveiling the structural, charge density distribution and supercapacitor performance of NiCo2O4 nano flowers for asymmetric device fabrication , 2021 .

[8]  Tianchun Lang,et al.  Evolution of a Snowflake-Like Mn 2+ Doped Cs 2NaBiCl 6 Nanosheet Phosphor Driven By Cation Exchange , 2021, SSRN Electronic Journal.

[9]  P. Kar,et al.  Probing the Emissive Behaviour of Lead-free Cs2AgBiCl6 Double Perovskite with Cu (II) Doping , 2021, New Journal of Chemistry.

[10]  C. Rameshan,et al.  In situ XPS studies of MoS2-based CO2 hydrogenation catalysts , 2021 .

[11]  Z. Xia,et al.  Mn2+‐Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application , 2020, Laser & Photonics Reviews.

[12]  B. Pradhan,et al.  Optical tunability of lead free double perovskite Cs2AgInCl6via composition variation , 2020 .

[13]  E. Meyer,et al.  A Review on Lead-Free Hybrid Halide Perovskites as Light Absorbers for Photovoltaic Applications Based on Their Structural, Optical, and Morphological Properties , 2020, Molecules.

[14]  P. Bansal,et al.  Investigating the property of water driven lead-free stable inorganic halide double perovskites. , 2020, Journal of colloid and interface science.

[15]  M. Davies Addressing the Stability of Lead Halide Perovskites , 2020, Joule.

[16]  Hong Jiang,et al.  Tunable Dual-Emission in Monodispersed Sb3+ /Mn2+ Codoped Cs2 NaInCl6 Perovskite Nanocrystals through an Energy Transfer Process. , 2020, Small.

[17]  Sungjee Kim,et al.  Colloidal Synthesis of Shape-Controlled Cs2NaBiX6 (X = Cl, Br) Double Perovskite Nanocrystals: Discrete Optical Transition by Non-Bonding Characters and Energy Transfer to Mn Dopants , 2020 .

[18]  L. Manna,et al.  Compositional Tuning of Carrier Dynamics in Cs2Na1–xAgxBiCl6 Double-Perovskite Nanocrystals , 2020, ACS energy letters.

[19]  Dan Huang,et al.  Highly Efficient Blue Emission from Self-Trapped Excitons in Stable Sb3+-Doped Cs2NaInCl6 Double Perovskites. , 2020, The journal of physical chemistry letters.

[20]  Hong‐Bin Yao,et al.  Improving Lead‐Free Double Perovskite Cs2NaBiCl6 Nanocrystal Optical Properties via Ion Doping , 2020, Advanced Optical Materials.

[21]  Q. Yan,et al.  Recent Advancements in Crystalline Pb-Free Halide Double Perovskites , 2020, Crystals.

[22]  L. Manna,et al.  Emissive Bi-Doped Double Perovskite Cs2Ag1–xNaxInCl6 Nanocrystals , 2019, ACS Energy Letters.

[23]  S. Seok,et al.  Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials , 2019, Advanced materials.

[24]  P. Woodward,et al.  Cs2NaBiCl6:Mn2+—A New Orange-Red Halide Double Perovskite Phosphor , 2019, Chemistry of Materials.

[25]  Guangda Niu,et al.  Efficient and stable emission of warm-white light from lead-free halide double perovskites , 2018, Nature.

[26]  T. Ma,et al.  Design of a novel and highly stable lead-free Cs2NaBiI6 double perovskite for photovoltaic application , 2018 .

[27]  M. Kanatzidis,et al.  “Unleaded” Perovskites: Status Quo and Future Prospects of Tin‐Based Perovskite Solar Cells , 2018, Advanced materials.

[28]  M. Fanciulli,et al.  Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystals , 2018, Journal of the American Chemical Society.

[29]  S. Saravanakumar,et al.  Analysis of structural, optical and charge density distribution studies on Zn1-xMnxS nanostructures , 2018, Physica B: Condensed Matter.

[30]  K. Asokan,et al.  Morphological investigations on the growth of defect-rich Bi2Te3 nanorods and their thermoelectric properties , 2018 .

[31]  Angshuman Nag,et al.  Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites. , 2018, Chemical communications.

[32]  Bin Yang,et al.  Lead-Free Silver-Bismuth Halide Double Perovskite Nanocrystals. , 2018, Angewandte Chemie.

[33]  S. Ogale,et al.  Lead-Free Perovskite Semiconductors Based on Germanium–Tin Solid Solutions: Structural and Optoelectronic Properties , 2018 .

[34]  Guangda Niu,et al.  Cs2AgInCl6 Double Perovskite Single Crystals: Parity Forbidden Transitions and Their Application For Sensitive and Fast UV Photodetectors , 2017 .

[35]  Seongsu Lee,et al.  Insights into cationic ordering in Re-based double perovskite oxides , 2016, Scientific Reports.

[36]  Nripan Mathews,et al.  Lead-free germanium iodide perovskite materials for photovoltaic applications , 2015 .

[37]  D. J. Clark,et al.  Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. , 2015, Journal of the American Chemical Society.

[38]  C. S. Wong,et al.  Evaluation of Williamson–Hall Strain and Stress Distribution in ZnO Nanowires Prepared Using Aliphatic Alcohol , 2015 .

[39]  S. Saravanakumar,et al.  Structural, magnetic and charge-related properties of nano-sized cerium manganese oxide, a dilute magnetic oxide semiconductor , 2014 .

[40]  P. Natishan,et al.  Chloride Ion Interactions with Oxide-Covered Aluminum Leading to Pitting Corrosion: A Review , 2014 .

[41]  Fujio Izumi,et al.  Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting , 2013, Powder Diffraction.

[42]  Y. Liu,et al.  The conversion of carbon dioxide and hydrogen into methanol and higher alcohols , 2011 .

[43]  H. Zeng,et al.  Design of Sb2S3 nanorod-bundles: imperfect oriented attachment , 2006 .

[44]  G. Ertl,et al.  X-ray photoemission study of oxygen and nitric oxide adsorption on MoS2 , 1986 .

[45]  D. Collins,et al.  Electron density images from imperfect data by iterative entropy maximization , 1982, Nature.

[46]  J. Rabalais,et al.  X-ray photoelectron spectra and electronic structure of Bi2X3 (X = O, S, Se, Te) , 1977 .

[47]  H. Siegbahn,et al.  Angular Distribution of Electrons in ESCA Spectra from a Single Crystal , 1970 .

[48]  J. C. Slater Atomic Shielding Constants , 1930 .