Surface plasmon resonance of electrochemically deposited Au-black

Au-black, a kind of gold nanostructure, was electrochemically deposited on a Au-vapor-deposited glass plate, and its optical properties were evaluated with a surface plasmon resonance (SPR) measurement system. The Au-black was found to exhibit an extraordinary high resonance angle (minimum reflectance angle) compared to that of the Au-vapor-deposited glass plate. We proposed a five-layer model, which consists of glass, Cr, Au, Au-black, and solution layers, to explain the high resonance angle of the Au-black plate. The calculation was based on the Fresnel formulas extended for multilayers. When the Bruggeman formula was used to obtain a refractive index of the Au-black layer, the numerical simulation could qualitatively explain the experimental observations. The curve fitting method by the five-layer model enabled us to simultaneously estimate the thickness of the Au-black layer and the volume fraction of Au in Au-black.

[1]  R. Garrell,et al.  Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, Mytilus edulis. , 2000, Biopolymers.

[2]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[3]  Yoshihito Ikariyama,et al.  Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor , 2000 .

[4]  P. Christou,et al.  Stable Transformation of Soybean Callus by DNA-Coated Gold Particles. , 1988, Plant physiology.

[5]  W. Smith,et al.  Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS). , 2002, The Analyst.

[6]  Y. Yoshida,et al.  SURFACE DESIGN OF SPR-BASED IMMUNOSENSOR FOR THE EFFECTIVE BINDING OF ANTIGEN OR ANTIBODY IN THE EVANESCENT FIELD USING MIXED POLYMER MATRIX , 1998 .

[7]  M. Aizawa,et al.  Micro-Enzyme Electrode as a High-Performance Detector of Flow Injection Analysis , 1989 .

[8]  Fabrication and Characterization of Gold–Platinum Black Electrode , 2001 .

[9]  H. Yao,et al.  Particle Crystals of Surface Modified Gold Nanoparticles Grown from Water , 2001 .

[10]  G. U. Kulkarni,et al.  A novel method of preparing thiol-derivatised nanoparticles ofgold, platinum and silver forming superstructures , 1997 .

[11]  A. L. Crumbliss,et al.  Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition , 1992, Biotechnology and bioengineering.

[12]  L. Liz‐Marzán,et al.  Optical Properties of Thin Films of Au@SiO2 Particles , 2001 .

[13]  Robert M. Corn,et al.  Variable Index of Refraction Ultrathin Films Formed from Self-Assembled Zirconium Phosphonate Multilayers: Characterization by Surface Plasmon Resonance Measurements and Polarization/Modulation FT-IR Spectroscopy , 1995 .

[14]  B. Liedberg,et al.  Gas detection by means of surface plasmon resonance , 1982 .

[15]  Ramasamy Manoharan,et al.  Extremely Large Enhancement Factors in Surface-Enhanced Raman Scattering for Molecules on Colloidal Gold Clusters , 1998 .

[16]  A. R. Layson,et al.  The Morphology of Platinum Black Electrodeposited on Highly Oriented Pyrolytic Graphite Studied with Scanning Electron Microscopy and Scanning Tunneling Microscopy , 1997 .

[17]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[18]  A. Ishimaru Electromagnetic Wave Propagation, Radiation, and Scattering , 1990 .

[19]  A. M. Feltham,et al.  Platinized platinum electrodes , 1971 .

[20]  S. Yamauchi,et al.  Surface control of platinized platinum as a transducer matrix for micro-enzyme electrodes , 1988 .

[21]  Christophe Petit,et al.  Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles , 1998 .

[22]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[23]  S. Yamauchi,et al.  Enzyme Embodied Electrode ——A New Amperometric Biosensing Device , 1989 .

[24]  W. Faulk,et al.  Communication to the editors: An immunocolloid method for the electron microscope , 1971 .

[25]  Ingemar Lundström,et al.  Real-time biospecific interaction analysis , 1994 .

[26]  G. Frens Controlled nucleation for the regulation of the particle size in monodisperse gold solutions , 1973 .

[27]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[28]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[29]  Kyle S. Johnston,et al.  New analytical technique for characterization of thin films using surface plasmon resonance , 1995 .

[30]  O. Niwa,et al.  Time differential surface plasmon resonance measurements applied for electrochemical analysis , 1997 .

[31]  G. Ashwell,et al.  HIGHLY SELECTIVE SURFACE PLASMON RESONANCE SENSOR FOR NO2 , 1996 .

[32]  Surface-plasmon opto-electrochemistry , 1996 .

[33]  D. Reinhoudt,et al.  Chromoionophores in optical ion sensors , 1989 .

[34]  Saulius Juodkazis,et al.  Enhancement of Surface Plasmon Resonance Sensing for DNA Hybridization Using Colloidal Au Attached Probe DNA. , 2002 .

[35]  P. Roussignol,et al.  Surface-mediated enhancement of optical phase conjugation in metal colloids. , 1985, Optics letters.