Adiabatic Theorem for Quantum Spin Systems.

The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ϵ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

[1]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[2]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[3]  G. Hagedorn,et al.  Elementary Exponential Error Estimates for the Adiabatic Approximation , 2002 .

[4]  Stuart A Rice,et al.  Assisted adiabatic passage revisited. , 2005, The journal of physical chemistry. B.

[5]  Tobias J. Osborne Simulating adiabatic evolution of gapped spin systems , 2007 .

[6]  J. Bru,et al.  AC-Conductivity Measure from Heat Production of Free Fermions in Disordered Media , 2016, 1611.07740.

[7]  Michael V Berry,et al.  Histories of adiabatic quantum transitions , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[9]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[10]  Stefan Teufel,et al.  Adiabatic perturbation theory in quantum dynamics , 2003 .

[11]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition and relaxation to a steady state , 2009, 0912.4034.

[12]  Stuart A Rice,et al.  On the consistency, extremal, and global properties of counterdiabatic fields. , 2008, The Journal of chemical physics.

[13]  J. E. Avron,et al.  Adiabatic Theorem without a Gap Condition , 1999 .

[14]  Frank Wilczek,et al.  Fractional Statistics and the Quantum Hall Effect , 1984 .

[15]  J. M. Robbins,et al.  Chaotic classical and half-classical adiabatic reactions: geometric magnetism and deterministic friction , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[17]  J. Kirkwood The statistical mechanical theory of irreversible processes , 1949 .

[18]  J. Froehlich,et al.  Adiabatic Theorems and Reversible Isothermal Processes , 2005, math-ph/0601045.

[19]  Tosio Kato On the Adiabatic Theorem of Quantum Mechanics , 1950 .

[20]  J. Bru,et al.  Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory , 2016, 1702.08869.

[21]  On Mott’s formula for the ac-conductivity in the Anderson model , 2005, math-ph/0508007.

[22]  Y. Ogata,et al.  The Green-Kubo Formula and the Onsager Reciprocity Relations in Quantum Statistical Mechanics , 2006 .

[23]  B. Bradlyn,et al.  Kubo formulas for viscosity: Hall viscosity, Ward identities, and the relation with conductivity , 2012, 1207.7021.

[24]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[25]  M. B. Hastings,et al.  Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance , 2005 .

[26]  G. Mahan Condensed Matter in a Nutshell , 2010 .

[27]  Wu,et al.  Quantized Hall conductance as a topological invariant. , 1984, Physical review. B, Condensed matter.

[28]  M. B. Hastings,et al.  A Short Proof of Stability of Topological Order under Local Perturbations , 2010, 1001.4363.

[29]  V. Cheianov,et al.  Time Scale for Adiabaticity Breakdown in Driven Many-Body Systems and Orthogonality Catastrophe. , 2016, Physical review letters.

[30]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[31]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[32]  M. Hastings,et al.  Quantization of Hall Conductance for Interacting Electrons on a Torus , 2013, 1306.1258.

[33]  W. W. Ho,et al.  Quasi-adiabatic dynamics and state preparation in Floquet many-body systems , 2016, 1611.05024.

[34]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[35]  M. Porta,et al.  Universality of the Hall Conductivity in Interacting Electron Systems , 2015, Communications in Mathematical Physics.

[36]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[37]  Kazutaka Takahashi Transitionless quantum driving for spin systems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Alexander Elgart,et al.  The Adiabatic Theorem of Quantum Mechanics , 1998 .

[39]  Seiler,et al.  Quantum Hall effect and the relative index for projections. , 1990, Physical review letters.

[40]  Generalized Adiabatic Invariance * , .

[41]  T. Esslinger,et al.  Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices. , 2015, Physical review letters.

[42]  Wojciech H Zurek,et al.  Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. , 2012, Physical review letters.

[43]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[44]  Y. Ogata,et al.  Entropic Fluctuations in Quantum Statistical Mechanics. An Introduction , 2011, 1106.3786.

[45]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[46]  Klaus Molmer,et al.  Adiabatic tracking of quantum many-body dynamics , 2014, 1408.0524.

[47]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[48]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[49]  Seiler,et al.  Quantization of the Hall conductance for general, multiparticle Schrödinger Hamiltonians. , 1985, Physical review letters.

[50]  D. Thouless,et al.  Quantization of particle transport , 1983 .

[51]  Bruno Nachtergaele,et al.  Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems , 2011, 1102.0842.

[52]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[53]  B. Simon,et al.  Homotopy and Quantization in Condensed Matter Physics , 1983 .

[54]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds and the Exponential Clustering Theorem , 2005, math-ph/0506030.

[55]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[56]  Daniel A. Lidar,et al.  Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.

[57]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[58]  J. Avron,et al.  Adiabatic Response for Lindblad Dynamics , 2012, Journal of Statistical Physics.

[59]  G. Nenciu,et al.  Linear adiabatic theory. Exponential estimates , 1993 .

[60]  A. Polkovnikov,et al.  Dynamical quantum Hall effect in the parameter space , 2011, Proceedings of the National Academy of Sciences.