Global Minimax Approaches for Solving Discrete Problems

Techniques and principles of minimax theory play a key role in many areas of research, including optimization, game theory, scheduling, location-allocation, packing, and computational complexity. In this paper we study a continuous minimax approach which was used in the proof of a longstanding conjecture about Steiner minimum trees, and discuss its various potential applications to other discrete problems.

[1]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[2]  V. F. Demʹi︠a︡nov,et al.  Introduction to minimax , 1976 .

[3]  V. F. Demʹi︠a︡nov,et al.  Introduction to minimax , 1976 .

[4]  David S. Johnson,et al.  The Complexity of Computing Steiner Minimal Trees , 1977 .

[5]  Fan Chung,et al.  A Lower Bound for the Steiner Tree Problem , 1978 .

[6]  Henry O. Pollak,et al.  Some Remarks on the Steiner Problem , 1978, J. Comb. Theory A.

[7]  Ding-Zhu Du,et al.  A Short Proof of a Result of Pollak on Steiner Minimal Trees , 1982, J. Comb. Theory, Ser. A.

[8]  Ding-Zhu Du,et al.  A new bound for the steiner ratio , 1983 .

[9]  Ronald L. Graham,et al.  A NEW BOUND FOR EUCLIDEAN STEINER MINIMAL TREES , 1985 .

[10]  F. K. Hwang,et al.  The Steiner Ratio Conjecture Is True for Five Points , 1985, J. Comb. Theory A.

[11]  P. Widmayer,et al.  A simple proof of the Steiner ratio conjecture for five points , 1989 .

[12]  Ding-Zhu Du,et al.  An approach for proving lower bounds: solution of Gilbert-Pollak's conjecture on Steiner ratio , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[13]  D. Du,et al.  The Steiner ratio conjecture of Gilbert and Pollak is true. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Q. Feng,et al.  On better heuristic for Euclidean Steiner minimum trees , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[15]  J. Hyam Rubinstein,et al.  The Steiner ratio conjecture for six points , 1991, J. Comb. Theory A.

[16]  Kenneth Falconer,et al.  Unsolved Problems In Geometry , 1991 .

[17]  H. T. Croft,et al.  Packing and Covering , 1991 .

[18]  Piotr Berman,et al.  Improved approximations for the Steiner tree problem , 1992, SODA '92.

[19]  Ding-Zhu Du,et al.  Minimum steiner trees in normed planes , 1993, Discret. Comput. Geom..

[20]  Panos M. Pardalos,et al.  A continuous based heuristic for the maximum clique problem , 1993, Cliques, Coloring, and Satisfiability.

[21]  Panos M. Pardalos,et al.  Optimization methods for computing global minima of nonconvex potential energy functions , 1994, J. Glob. Optim..

[22]  Panos M. Pardalos,et al.  A continuous version of a result of Du and Hwang , 1994, J. Glob. Optim..

[23]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[24]  Panos M. Pardalos,et al.  New results in the packing of equal circles in a square , 1995, Discret. Math..

[25]  P. Pardalos,et al.  Minimax and applications , 1995 .

[26]  D. Du Minimax and Its Applications , 1995 .

[27]  F. Giannessi,et al.  Nonlinear Optimization and Applications , 1996, Springer US.

[28]  Panos M. Pardalos,et al.  Continuous Approaches to Discrete Optimization Problems , 1996 .

[29]  Panos M. Pardalos,et al.  Interior Point Methods for Global Optimization , 1996 .

[30]  T Talaky,et al.  Interior Point Methods of Mathematical Programming , 1997 .