Solving a laminar boundary layer equation with the rational Gegenbauer functions

Abstract In this paper, a collocation method using a new weighted orthogonal system on the half-line, namely the rational Gegenbauer functions, is introduced to solve numerically the third-order nonlinear differential equation, af ‴ + ff ″ = 0 , where a is a constant parameter. This method solves the problems on semi-infinite domain without truncating it to a finite domain and transforming the domain of the problems to a finite domain. For a = 2 , the equation is the well-known Blasius equation, which is a laminar viscous flow over a semi-infinite flat plate. We solve this equation by considering 1 ⩽ a ⩽ 2 and compare the new results with the established results to show the efficiency and accuracy of the new method.

[1]  Mehdi Dehghan,et al.  Rational Legendre pseudospectral approach for solving nonlinear differential equations of Lane-Emden type , 2009, J. Comput. Phys..

[2]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[3]  Jianguo Lin,et al.  A new approximate iteration solution of Blasius equation , 1999 .

[4]  Abdul-Majid Wazwaz,et al.  The variational iteration method for solving two forms of Blasius equation on a half-infinite domain , 2007, Appl. Math. Comput..

[5]  Shijun Liao,et al.  An explicit, totally analytic solution of laminar viscous flow over a semi-infinite flat plate , 1998 .

[6]  D. Funaro,et al.  Laguerre spectral approximation of elliptic problems in exterior domains , 1990 .

[7]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[8]  C. Christov A Complete Orthonormal System of Functions in $L^2 ( - \infty ,\infty )$ Space , 1982 .

[9]  Faiz Ahmad,et al.  An approximate analytic solution of the Blasius problem , 2008 .

[10]  Mohsen Razzaghi,et al.  Rational Chebyshev tau method for solving Volterra's population model , 2004, Appl. Math. Comput..

[11]  M. Dehghan,et al.  Application of semi‐analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses , 2010 .

[12]  K. Parand,et al.  Rational scaled generalized Laguerre function collocation method for solving the Blasius equation , 2009, J. Comput. Appl. Math..

[13]  J. Parlange,et al.  Analytical approximations to the solution of the Blasius equation , 1981 .

[14]  D. Summers,et al.  The use of generalized Laguerre polynomials in spectral methods for nonlinear differential equations , 1998 .

[15]  Jie Shen,et al.  Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval , 2000, Numerische Mathematik.

[16]  E. Magyari The moving plate thermometer , 2008 .

[17]  Mehdi Dehghan,et al.  Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate , 2008 .

[18]  F. Allan,et al.  On the analytic solutions of the nonhomogeneous Blasius problem , 2005 .

[19]  N. S. Asaithambi,et al.  A numerical method for the solution of the Falkner-Skan equation , 1997 .

[20]  A. Alizadeh-Pahlavan,et al.  On the analytical solution of viscous fluid flow past a flat plate , 2008 .

[21]  Guo Ben-Yu,et al.  Gegenbauer Approximation and Its Applications to Differential Equations on the Whole Line , 1998 .

[22]  Jie Shen,et al.  Stable and Efficient Spectral Methods in Unbounded Domains Using Laguerre Functions , 2000, SIAM J. Numer. Anal..

[23]  G. Ben-yu Error estimation of Hermite spectral method for nonlinear partial differential equations , 1999 .

[24]  Mehdi Dehghan,et al.  A semi‐numerical technique for solving the multi‐point boundary value problems and engineering applications , 2011 .

[25]  G. G. Stokes On the Effect of the Internal Friction of Fluids on the Motion of Pendulums , 2009 .

[26]  Mehdi Dehghan,et al.  Solution of a laminar boundary layer flow via a numerical method , 2010 .

[27]  Hani I. Siyyam,et al.  Laguerre Tau Methods for Solving Higher-Order Ordinary Differential Equations , 2001 .

[28]  Mohsen Razzaghi,et al.  Rational Legendre Approximation for Solving some Physical Problems on Semi-Infinite Intervals , 2004 .

[29]  Zhongqing Wang,et al.  Chebyshev rational spectral and pseudospectral methods on a semi‐infinite interval , 2002 .

[30]  M. Dehghan,et al.  The solution of the Falkner‐Skan equation arising in the modelling of boundary‐layer problems via variational iteration method , 2011 .

[31]  Beong In Yun Intuitive approach to the approximate analytical solution for the Blasius problem , 2010, Appl. Math. Comput..

[32]  Mehdi Dehghan,et al.  Modified generalized Laguerre function Tau method for solving laminar viscous flow: The Blasius equation , 2010 .

[33]  Mehdi Dehghan,et al.  Solution of a model describing biological species living together using the variational iteration method , 2008, Math. Comput. Model..

[34]  J. Boyd,et al.  Pseudospectral methods on a semi-infinite interval with application to the Hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions , 2003 .

[35]  L. Howarth On the Calculation of Steady Flow in the Boundary Layer Near the Surface of a Cylinder in a Stream , 1934 .

[36]  Guo Ben-yu,et al.  Gegenbauer approximation and its applications to differential equations with rough asymptotic behaviors at infinity , 2001 .

[37]  C. Bender,et al.  A new perturbative approach to nonlinear problems , 1989 .

[38]  V. M. F. B.Sc.,et al.  LXXXV. Solutions of the boundary-layer equations , 1931 .

[39]  Joel H. Ferziger,et al.  Introduction to Theoretical and Computational Fluid Dynamics , 1996 .

[40]  J. Boyd Orthogonal rational functions on a semi-infinite interval , 1987 .

[41]  M. Dehghan,et al.  The use of variational iteration method and Adomian decomposition method to solve the Eikonal equation and its application in the reconstruction problem , 2011 .

[42]  Ishak Hashim Comments on "A new algorithm for solving classical Blasius equation" by L. Wang , 2006, Appl. Math. Comput..

[43]  Rafael Cortell Bataller,et al.  Radiation effects in the Blasius flow , 2008, Appl. Math. Comput..

[44]  Daniele Funaro,et al.  Computational aspects of pseudospectral Laguerre approximations , 1990 .

[45]  Lei Wang A new algorithm for solving classical Blasius equation , 2004, Appl. Math. Comput..

[46]  S. Liao An explicit, totally analytic approximate solution for Blasius’ viscous flow problems , 1999 .

[47]  Mehdi Dehghan,et al.  Solution of a nonlinear time-delay model in biology via semi-analytical approaches , 2010, Comput. Phys. Commun..

[48]  Saeid Abbasbandy,et al.  A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method , 2007 .

[49]  Jie Shen,et al.  A Rational Approximation and Its Applications to Differential Equations on the Half Line , 2000, J. Sci. Comput..

[50]  Z. Belhachmi,et al.  ON THE CONCAVE SOLUTIONS OF THE BLASIUS EQUATION , 2000 .

[51]  L. Howarth,et al.  On the solution of the laminar boundary layer equations. , 1938, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences.

[52]  Abdul-Majid Wazwaz,et al.  The modified decomposition method and Padé approximants for a boundary layer equation in unbounded domain , 2006, Appl. Math. Comput..

[53]  D. Funaro,et al.  Approximation of some diffusion evolution equations in unbounded domains by hermite functions , 1991 .

[54]  Chen Cha'o-Kuang,et al.  The solution of the blasius equation by the differential transformation method , 1998 .

[55]  Ji-Huan He,et al.  A simple perturbation approach to Blasius equation , 2003, Appl. Math. Comput..

[56]  J. Boyd Spectral methods using rational basis functions on an infinite interval , 1987 .

[57]  Mehdi Dehghan,et al.  Solution of delay differential equations via a homotopy perturbation method , 2008, Math. Comput. Model..

[58]  M. Dehghan,et al.  Solving nonlinear fractional partial differential equations using the homotopy analysis method , 2010 .

[59]  Ben-Yu Guo,et al.  Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations , 2000 .

[60]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[61]  K. Parand,et al.  Rational Chebyshev pseudospectral approach for solving Thomas–Fermi equation , 2009 .

[62]  John P. Boyd,et al.  The Blasius Function: Computations Before Computers, the Value of Tricks, Undergraduate Projects, and Open Research Problems , 2008, SIAM Rev..

[63]  J. Boyd The Optimization of Convergence for Chebyshev Polynomial Methods in an Unbounded Domain , 1982 .

[64]  Miglena N. Koleva,et al.  Two-grid quasilinearization approach to ODEs with applications to model problems in physics and mechanics , 2010, Comput. Phys. Commun..

[65]  H. Blasius Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .

[66]  Rafael Cortell,et al.  Numerical solutions of the classical Blasius flat-plate problem , 2005, Appl. Math. Comput..

[67]  M. Dehghan,et al.  The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique , 2009 .

[68]  Ji-Huan He Approximate analytical solution of Blasius' equation , 1998 .

[69]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[70]  A. Raptis,et al.  Effect of thermal radiation on MHD flow , 2004, Appl. Math. Comput..

[71]  Mehdi Dehghan,et al.  Sinc-collocation method for solving the Blasius equation , 2009 .

[72]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .