Numerical Solution of Blasius Equation through Neural Networks Algorithm

In this paper mathematical techniques have been used for the solution of Blasius differential equation. The method uses optimized artificial neural networks approximation with Sequential Quadratic Programming algorithm and hybrid AST-INP techniques. Numerical treatment of this problem reported in the literature is based on Shooting and Finite Differences Method, while our mathematical approach is very simple. Numerical testing showed that solutions obtained by using the proposed methods are better in accuracy than those reported in literature. Statistical analysis provided the convergence of the proposed model.