Algorithmic aspects of total k-subdomination in graphs

Let G = (V, E) be a graph and let k ∈ Z. A total k-subdominating function is a function f : V → {−1, 1} such that for at least k vertices v of G, the sum of the function values of f in the open neighborhood of v is positive. The total k-subdomination number of G is the minimum value of f(V ) over all total k-subdominating functions f of G where f(V ) denotes the sum of the function values assigned to the vertices under f . In this paper, we present a cubic time algorithm to compute the total k-subdomination number of a tree and also show that the associated decision problem is NP-complete for general graphs.

[1]  Michael A. Henning,et al.  Inequalities relating domination parameters in cubic graphs , 1996, Discret. Math..

[2]  Johannes H. Hattingh,et al.  Total k-subdominating functions on graphs , 2006, Australas. J Comb..

[3]  Johannes H. Hattingh,et al.  The algorithmic complexity of certain functional variations of total domination in graphs , 2004, Australas. J Comb..

[4]  Ji,et al.  On the Signed Domination in Graphs , 2022 .

[5]  Michael A. Henning,et al.  Domination in regular graphs , 1996, Ars Comb..

[6]  Liu Hai On the Total Domination Number of Graphs with Minimum Degree at Least Three , 2002 .

[7]  Hong-Gwa Yeh,et al.  k-Subdomination in graphs , 2002, Discret. Appl. Math..

[8]  Yinzhen Li,et al.  A note on the lower bounds of signed domination number of a graph , 1999, Discret. Math..

[9]  Johannes H. Hattingh,et al.  The algorithmic complexity of signed domination in graphs , 1995, Australas. J Comb..

[10]  Michael A. Henning Signed total domination in graphs , 2004, Discret. Math..

[11]  Tara S. Holm,et al.  On majority domination in graphs , 2001, Discret. Math..

[12]  Bohdan Zelinka Some remarks on domination in cubic graphs , 1996, Discret. Math..

[13]  Odile Favaron,et al.  Signed domination in regular graphs , 1996, Discret. Math..

[14]  G. Chang,et al.  ALGORITHMIC ASPECTS OF MAJORITY DOMINATION , 1997 .

[15]  Zoltán Füredi,et al.  Signed Domination in Regular Graphs and Set-Systems , 1999, J. Comb. Theory, Ser. B.

[16]  Bohdan Zelinka,et al.  Signed Total Domination Nnumber of a Graph , 2001 .

[17]  Ernest J. Cockayne,et al.  On a generalization of signed dominating functions of graphs , 1996, Ars Comb..

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .