Identifiability issues in noisy ICA
暂无分享,去创建一个
[1] Eric Moulines,et al. Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[2] Joos Vandewalle,et al. Fetal electrocardiogram extraction by blind source subspace separation , 2000, IEEE Transactions on Biomedical Engineering.
[3] Calyampudi R. Rao,et al. Characterization Problems in Mathematical Statistics , 1976 .
[4] J. Ord,et al. Characterization Problems in Mathematical Statistics , 1975 .
[5] Aapo Hyvärinen,et al. Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood , 1998, Neurocomputing.
[6] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[7] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[8] Constantinos B. Papadias. Blind source separation based on multi-user kurtosis criteria , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[9] Jean-Francois Cardoso,et al. Blind signal separation: statistical principles , 1998, Proc. IEEE.
[10] Monson H. Hayes,et al. Statistical Digital Signal Processing and Modeling , 1996 .
[11] A. Hyvarinen,et al. Fast ICA for noisy data using Gaussian moments , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).
[12] Gene H. Golub,et al. Matrix computations , 1983 .
[13] V. Koivunen,et al. Identifiability and Separability of Linear Ica Models Revisited , 2003 .
[14] Hagai Attias,et al. Independent Factor Analysis , 1999, Neural Computation.
[15] Aapo Hyvärinen,et al. Gaussian moments for noisy independent component analysis , 1999, IEEE Signal Processing Letters.
[16] Bruno A. Olshausen,et al. Learning Sparse Multiscale Image Representations , 2002, NIPS.
[17] Joos Vandewalle,et al. A technique for higher-order-only blind source separation , 1996 .