The normal flux method at the boundary for multidimensional finite volume approximations in CFD

Abstract This paper presents a general method for imposing boundary conditions in the context of hyperbolic systems of conservation laws. This method is particularly well suited for approximations in the framework of Finite Volume Methods in the sense that it computes directly the normal flux at the boundary. We generalize our approach to nonconservative hyperbolic systems and discuss both the characteristic and the noncharacteristic cases. We present several applications to models occurring in Computational Fluid Mechanics like the Euler equations for compressible inviscid fluids with real equation of state, shallow water equations, magnetohydrodynamics equations and two fluid models.

[1]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .

[2]  Franccois Dubois,et al.  Partial Riemann problem, boundary conditions, and gas dynamics , 2011, 1101.2752.

[3]  J.-M. Ghidaglia FLUX SCHEMES FOR SOLVING NONLINEAR SYSTEMS OF CONSERVATION LAWS , 2001 .

[4]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[5]  Jean-Michel Ghidaglia,et al.  Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation , 1996 .

[6]  D. Drew,et al.  Application of general constitutive principles to the derivation of multidimensional two-phase flow equations , 1979 .

[7]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[8]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[9]  Jean-Michel Ghidaglia,et al.  On the numerical solution to two fluid models via a cell centered finite volume method , 2001 .

[10]  Gad Hetsroni,et al.  Handbook of multiphase systems , 1982 .

[11]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[12]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[13]  Raymond F. Bishop,et al.  Thermo-fluid Dynamic Theory of Two-Phase Flow , 1975 .

[14]  D. Serre Systems of conservation laws , 1999 .

[15]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[16]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[17]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[18]  Laurence Halpern,et al.  Absorbing boundaries and layers, domain decomposition methods : applications to large scale computers , 2001 .

[19]  L. C. Wrobel Numerical computation of internal and external flows. Volume 2: Computational methods for inviscid and viscous flows , 1992 .

[20]  Jean-Michel Ghidaglia,et al.  ON BOUNDARY CONDITIONS FOR MULTIDIMENSIONAL HYPERBOLIC SYSTEMS OF CONSERVATION LAWS IN THE FINITE VOLUME FRAMEWORK , 2002 .

[21]  M M Hafez,et al.  Innovative Methods for Numerical Solution of Partial Differential Equations , 2001 .

[22]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[23]  J. Oliger,et al.  Theoretical and practical aspects of some initial-boundary value problems in fluid dynamics , 1976 .

[24]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.