Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor

Adenosine 5’ triphosphate (ATP) is a ubiquitous extracellular signaling messenger. Here, we describe a method for in-vivo imaging of extracellular ATP with high spatiotemporal resolution. We prepared a comprehensive set of cysteine-substitution mutants of ATP-binding protein, Bacillus FoF1-ATP synthase ε subunit, labeled with small-molecule fluorophores at the introduced cysteine residue. Screening revealed that the Cy3-labeled glutamine-105 mutant (Q105C-Cy3; designated ATPOS) shows a large fluorescence change in the presence of ATP, with submicromolar affinity, pH-independence, and high selectivity for ATP over ATP metabolites and other nucleotides. To enable in-vivo validation, we introduced BoNT/C-Hc for binding to neuronal plasma membrane and Alexa Fluor 488 for ratiometric measurement. The resulting ATPOS complex binds to neurons in cerebral cortex of living mice, and clearly visualized a concentrically propagating wave of extracellular ATP release in response to electrical stimulation. ATPOS should be useful to probe the extracellular ATP dynamics of diverse biological processes in vivo.

[1]  Wolfgang F. Graier,et al.  Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells , 2018, Cell reports.

[2]  D. Attwell,et al.  Targeting pericytes for therapeutic approaches to neurological disorders , 2018, Acta Neuropathologica.

[3]  J. Marvin,et al.  A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP , 2018, bioRxiv.

[4]  M. Raghunath,et al.  RGB-Color Intensiometric Indicators to Visualize Spatiotemporal Dynamics of ATP in Single Cells. , 2018, Angewandte Chemie.

[5]  F. Di Virgilio,et al.  Extracellular ATP and P2 purinergic signalling in the tumour microenvironment , 2018, Nature Reviews Cancer.

[6]  Jason M. Conley,et al.  Imaging extracellular ATP with a genetically-encoded, ratiometric fluorescent sensor , 2017, PloS one.

[7]  F. Di Virgilio,et al.  Use of luciferase probes to measure ATP in living cells and animals , 2017, Nature Protocols.

[8]  M. Lauritzen,et al.  Activity‐dependent calcium, oxygen, and vascular responses in a mouse model of familial hemiplegic migraine type 1 , 2016, Annals of neurology.

[9]  Jason M. Conley,et al.  Imaging Adenosine Triphosphate (ATP) , 2016, The Biological Bulletin.

[10]  R. Corradetti,et al.  Purinergic signalling in brain ischemia , 2016, Neuropharmacology.

[11]  Brian A MacVicar,et al.  Astrocyte regulation of blood flow in the brain. , 2015, Cold Spring Harbor perspectives in biology.

[12]  K. Hirose,et al.  High-throughput development of a hybrid-type fluorescent glutamate sensor for analysis of synaptic transmission. , 2014, Angewandte Chemie.

[13]  Hiroyuki Noji,et al.  Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging , 2014, Scientific Reports.

[14]  M. Moskowitz,et al.  Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations , 2014, Nature Reviews Neuroscience.

[15]  M. Idzko,et al.  Nucleotide signalling during inflammation , 2014, Nature.

[16]  T. Yoshimine,et al.  Isoflurane suppresses cortical spreading depolarizations compared to propofol — Implications for sedation of neurocritical care patients , 2014, Experimental Neurology.

[17]  A. Charles,et al.  Cortical spreading depression and migraine , 2013, Nature Reviews Neurology.

[18]  G. Yellen,et al.  Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio , 2013, Nature Communications.

[19]  Suliana Manley,et al.  A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. , 2013, Nature chemistry.

[20]  F. Saudou,et al.  Vesicular Glycolysis Provides On-Board Energy for Fast Axonal Transport , 2013, Cell.

[21]  A. Ojida,et al.  Organelle-localizable fluorescent chemosensors for site-specific multicolor imaging of nucleoside polyphosphate dynamics in living cells. , 2012, Journal of the American Chemical Society.

[22]  B. Sperlágh,et al.  K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study , 2012, British journal of pharmacology.

[23]  Baljit S. Khakh,et al.  Neuromodulation by Extracellular ATP and P2X Receptors in the CNS , 2012, Neuron.

[24]  H. Nonaka,et al.  Cell surface-anchored fluorescent aptamer sensor enables imaging of chemical transmitter dynamics. , 2012, Journal of the American Chemical Society.

[25]  Hye-Young Heo,et al.  Detecting activity-evoked pH changes in human brain , 2012, Proceedings of the National Academy of Sciences.

[26]  W. Junger,et al.  Immune cell regulation by autocrine purinergic signalling , 2011, Nature Reviews Immunology.

[27]  M. Lauritzen,et al.  Clinical Relevance of Cortical Spreading Depression in Neurological Disorders: Migraine, Malignant Stroke, Subarachnoid and Intracranial Hemorrhage, and Traumatic Brain Injury , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  Kai Johnsson,et al.  How to obtain labeled proteins and what to do with them. , 2010, Current opinion in biotechnology.

[29]  M. Smyth,et al.  Extracellular adenosine triphosphate and adenosine in cancer , 2010, Oncogene.

[30]  K. Deisseroth,et al.  Astrocytes Control Breathing Through pH-Dependent Release of ATP , 2010, Science.

[31]  S. Lukyanov,et al.  Fluorescent proteins and their applications in imaging living cells and tissues. , 2010, Physiological reviews.

[32]  Masahiko Watanabe,et al.  Imaging extrasynaptic glutamate dynamics in the brain , 2009, Neuroscience Research.

[33]  I. Hamachi,et al.  Recent Progress in Strategies for the Creation of Protein‐Based Fluorescent Biosensors , 2009, Chembiochem : a European journal of chemical biology.

[34]  Takeharu Nagai,et al.  Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators , 2009, Proceedings of the National Academy of Sciences.

[35]  Victor H Hernandez,et al.  ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear , 2008, Proceedings of the National Academy of Sciences.

[36]  Jim Berg,et al.  A genetically encoded fluorescent reporter of ATP/ADP ratio , 2008, Nature Methods.

[37]  F. Di Virgilio,et al.  Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging with Plasma Membrane Luciferase , 2008, PloS one.

[38]  G. Yegutkin Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. , 2008, Biochimica et biophysica acta.

[39]  Masasuke Yoshida,et al.  Role of the ϵ Subunit of Thermophilic F1-ATPase as a Sensor for ATP* , 2007, Journal of Biological Chemistry.

[40]  L. Khiroug,et al.  Exocytotic Release of ATP from Cultured Astrocytes* , 2007, Journal of Biological Chemistry.

[41]  C. Thompson,et al.  Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance , 2007, Brain Research.

[42]  N. Chaudhari,et al.  The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds , 2007, Proceedings of the National Academy of Sciences.

[43]  M. Iino,et al.  Optical glutamate sensor for spatiotemporal analysis of synaptic transmission , 2007, The European journal of neuroscience.

[44]  Geoffrey Burnstock,et al.  Physiology and pathophysiology of purinergic neurotransmission. , 2007, Physiological reviews.

[45]  G. Burnstock,et al.  Purinergic signalling in neuron–glia interactions , 2006, Nature Reviews Neuroscience.

[46]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[47]  Masasuke Yoshida,et al.  Real-time Monitoring of Conformational Dynamics of the ϵ Subunit in F1-ATPase* , 2005, Journal of Biological Chemistry.

[48]  F. Pedata,et al.  ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia , 2005, Neurochemistry International.

[49]  K. Takeuchi,et al.  Binding of Clostridium botulinum Type C and D Neurotoxins to Ganglioside and Phospholipid , 2005, Journal of Biological Chemistry.

[50]  F. Di Virgilio,et al.  A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. , 2005, Molecular biology of the cell.

[51]  Alexander V. Gourine,et al.  ATP is a mediator of chemosensory transduction in the central nervous system , 2005, Nature.

[52]  Sonja Hatz,et al.  Microelectrode biosensor for real-time measurement of ATP in biological tissue. , 2005, Analytical chemistry.

[53]  B. Mizaikoff,et al.  Amperometric ATP biosensor based on polymer entrapped enzymes. , 2004, Biosensors & bioelectronics.

[54]  Simon Kaja,et al.  A Cacna1a Knockin Migraine Mouse Model with Increased Susceptibility to Cortical Spreading Depression , 2004, Neuron.

[55]  A. Ebner,et al.  Cy3B™: Improving the Performance of Cyanine Dyes , 2004, Journal of Fluorescence.

[56]  Masasuke Yoshida,et al.  Isolated ϵ Subunit of Thermophilic F1-ATPase Binds ATP* , 2003, Journal of Biological Chemistry.

[57]  B. Saltin,et al.  Erythrocyte and the Regulation of Human Skeletal Muscle Blood Flow and Oxygen Delivery: Role of Circulating ATP , 2002, Circulation research.

[58]  N. Dale,et al.  Spike‐independent release of ATP from Xenopus spinal neurons evoked by activation of glutamate receptors , 2002, The Journal of physiology.

[59]  Z Wang,et al.  Direct observation of calcium-independent intercellular ATP signaling in astrocytes. , 2000, Analytical chemistry.

[60]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[61]  W. Kuhr,et al.  Direct electrochemical detection of purine- and pyrimidine-based nucleotides with sinusoidal voltammetry. , 1997, Analytical chemistry.

[62]  K. Kaila,et al.  Modulation of pH by neuronal activity , 1992, Trends in Neurosciences.

[63]  W. Pulsinelli,et al.  Dynamics of interstitial and intracellular pH in evolving brain infarct. , 1991, The American journal of physiology.

[64]  K. Reid,et al.  Strength-duration properties of cathodal pulses eliciting spreading depression in rat cerebral cortex , 1987, Brain Research.

[65]  A. Fletcher,et al.  Fluorescence quantum yields of some rhodamine dyes , 1982 .

[66]  P. Holton The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves , 1959, The Journal of physiology.

[67]  T. Dunwiddie,et al.  The Role and Regulation of Adenosine in the Central Nervous System , 2022 .

[68]  A. Ebner,et al.  Cy 3 BTM : Improving the Performance of Cyanine Dyes , 2022 .