Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals.

Crystalline silicon is the most important semiconductor material in the electronics industry. However, silicon has poor optical properties because of its indirect bandgap, which prevents the efficient emission and absorption of light. The energy structure of silicon can be manipulated through quantum confinement effects, and the excitonic emission from silicon nanocrystals increases in intensity and shifts to shorter wavelengths (a blueshift) as the size of the nanocrystals is reduced. Here we report experimental evidence for a short-lived visible band in the photoluminescence spectrum of silicon nanocrystals that increases in intensity and shifts to longer wavelengths (a redshift) with smaller nanocrystal sizes. This higher intensity indicates an increased quantum efficiency, which for 2.5-nm-diameter nanocrystals is enhanced by three orders of magnitude compared to bulk silicon. We assign this band to the radiative recombination of non-equilibrium electron-hole pairs in a process that does not involve phonons.

[1]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[2]  Kastner,et al.  Time-resolved photoluminescence in amorphous silicon dioxide. , 1987, Physical review. B, Condensed matter.

[3]  R. Friesner,et al.  Prediction of anomalous redshift in semiconductor clusters , 1992 .

[4]  A. Patz,et al.  Role of Oxygen , 1981 .

[5]  C. Delerue,et al.  Fast relaxation of hot carriers by impact ionization in semiconductor nanocrystals: Role of defects , 2009 .

[6]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[7]  J. Hollingsworth,et al.  Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals , 2003, cond-mat/0309712.

[8]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[9]  Minoru Fujii,et al.  Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime , 2000 .

[10]  R. Schaller,et al.  High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states , 2005 .

[11]  Philippe M. Fauchet,et al.  Ordering and self-organization in nanocrystalline silicon , 2000, Nature.

[12]  P. Guyot-Sionnest,et al.  Slow Electron Cooling in Colloidal Quantum Dots , 2008, Science.

[13]  M. Bittner,et al.  Picosecond photoluminescence and transient absorption in silicon nanocrystals , 2005 .

[14]  U. Kortshagen,et al.  Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies. , 2008, Physical review letters.

[15]  C. Reynaud,et al.  Photoluminescence properties of silicon nanocrystals as a function of their size , 2000 .

[16]  S. Cloutier,et al.  Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.

[17]  A. Brewer,et al.  In situ passivation and blue luminescence of silicon clusters using a cluster beam/H2O codeposition production method , 2009 .

[18]  Single-particle states in spherical Si/SiO2 quantum dots , 2006, cond-mat/0609193.

[19]  Lorenzo Pavesi,et al.  Optical gain in silicon nanocrystals , 2001 .

[20]  A. Nozik,et al.  Multiexciton generation by a single photon in nanocrystals. , 2006, Nano letters.

[21]  G Van Tendeloo,et al.  Classification and control of the origin of photoluminescence from Si nanocrystals. , 2008, Nature nanotechnology.

[22]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[23]  R. Berndt,et al.  Ultraviolet light emission from si in a scanning tunneling microscope. , 2007, Physical review letters.

[24]  N. Koshida Device Applications of Silicon Nanocrystals and Nanostructures , 2009 .

[25]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[26]  Jury V. Vandyshev,et al.  Blue emission in porous silicon: Oxygen-related photoluminescence. , 1994, Physical review. B, Condensed matter.

[27]  Kovalev,et al.  Influence of Quantum Confinement on the Critical Points of the Band Structure of Si. , 1996, Physical review letters.

[28]  R. Walters,et al.  Field-effect electroluminescence in silicon nanocrystals , 2005, Nature materials.

[29]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[30]  Kanemitsu Luminescence properties of nanometer-sized Si crystallites: Core and surface states. , 1994, Physical review. B, Condensed matter.

[31]  P. F. Szajowski,et al.  Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals , 1993, Science.

[32]  T. Gregorkiewicz,et al.  Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications , 2008 .

[33]  T. Gregorkiewicz,et al.  Direct bandgap optical transitions in Si nanocrystals , 2009, 0901.4268.

[34]  Delley,et al.  Quantum confinement in Si nanocrystals. , 1993, Physical review. B, Condensed matter.

[35]  J. Valenta,et al.  On the origin of the fast photoluminescence band in small silicon nanoparticles , 2008 .

[36]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[37]  Giulia Galli,et al.  Surface chemistry of silicon nanoclusters. , 2002, Physical review letters.

[38]  R. Lockwood,et al.  Silicon Nanocrystals: Fundamental Theory and Implications for Stimulated Emission , 2008 .

[39]  F. Koch,et al.  Optical Properties of Si Nanocrystals , 1999 .

[40]  Keiichi Yamamoto,et al.  Size-dependent near-infrared photoluminescence spectra of Si nanocrystals embedded in SiO2 matrices , 1997 .

[41]  Lin-wang Wang,et al.  Pseudopotential theory of Auger processes in CdSe quantum dots. , 2003, Physical review letters.

[42]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.