Mechanism insight into the effect of I/P buffer layer on the performance of NIP-type hydrogenated microcrystalline silicon solar cells

A simulation and experimental study on the effect of the buffer layer at the I/P interface on the performance of NIP-type hydrogenated microcrystalline silicon (μc-Si:H) single-junction solar cells is presented. Device-quality hydrogenated amorphous silicon (a-Si:H) material as a buffer layer at the I/P interface obviously improves the performance of NIP-type μc-Si:H single-junction solar cells. In addition to the well-known mechanism that an a-Si:H I/P buffer layer can reduce the recombination current density at I/P interfaces, the optically and electrically calibrated simulations and supporting experimental results in this study illustrate that the performance improvement also originates from the mitigation of the electric screening effect due to the reduced defect density at the I/P interfaces, which reinforces the bulk electric field. Integrating an optimized hydrogen profiling strategy and adding a-Si:H I/P buffer layer yielded an initial efficiency of 9.20% for μc-Si:H single-junction solar cells wi...

[1]  M. Kondo,et al.  11.0%-Efficient Thin-Film Microcrystalline Silicon Solar Cells With Honeycomb Textured Substrates , 2014, IEEE Journal of Photovoltaics.

[2]  Kah-Yoong Chan,et al.  Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors , 2008 .

[3]  Miro Zeman,et al.  Relation between the open-circuit voltage and the band gap of absorber and buffer layers in a-Si:H solar cells , 2008 .

[4]  A. Gross,et al.  N-side illuminated microcrystalline silicon solar cells , 2001 .

[5]  S. Guha,et al.  Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell , 2011 .

[6]  Don L. Williamson,et al.  Hydrogen dilution profiling for hydrogenated microcrystalline silicon solar cells , 2004 .

[7]  Jordi Andreu,et al.  The role of the buffer layer in the light of a new equivalent circuit for amorphous silicon solar cells , 1999 .

[8]  Joshua M. Pearce,et al.  Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry , 2003 .

[9]  B. Rech,et al.  Role of bandgap grading for the performance of a-SiGe:H based solar cells , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[10]  M. Zeman,et al.  Advanced Numerical Simulation Tool for Solar Cells - ASA5 , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[11]  Subhendu Guha,et al.  Amorphous and nanocrystalline silicon-based multi-junction solar cells , 2005 .

[12]  S. Guha,et al.  Optimization and characterization of i/p buffer layer in hydrogenated nanocrystalline silicon solar cells , 2008 .

[13]  A. R. Moore Electron and hole drift mobility in amorphous silicon , 1977 .

[14]  S. Guha,et al.  On the bandgap of hydrogenated nanocrystalline silicon intrinsic materials used in thin film silicon solar cells , 2013 .

[15]  Jian Sun,et al.  Improvement of hydrogenated microcrystalline silicon solar cell performance by VHF power profiling technique , 2010 .

[16]  Reinhard Carius,et al.  Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge , 1994 .

[17]  R. Reedy,et al.  Microscopic Measurements of Electrical Potential in Hydrogenated Nanocrystalline Silicon Solar Cells , 2012 .

[18]  S. Okur,et al.  Stability of microcrystalline silicon for thin film solar cell applications , 2003 .

[19]  H. Stiebig,et al.  a-SiGe:H based solar cells with graded absorption layer , 1998 .

[20]  Bernd Rech,et al.  Intrinsic microcrystalline silicon: A new material for photovoltaics , 2000 .

[21]  Michio Kondo,et al.  Effects of Substrate Surface Morphology on Microcrystalline Silicon Solar Cells , 2001 .

[22]  R. Carius,et al.  Microtwinning in microcrystalline silicon and its effect on grain-size measurements , 2003 .

[23]  Helmut Stiebig,et al.  Defect density and recombination lifetime in microcrystalline silicon absorbers of highly efficient thin-film solar cells determined by numerical device simulations , 2003 .

[24]  Jin Jang,et al.  Microcrystalline silicon thin films studied using spectroscopic ellipsometry , 2002 .

[25]  C. Wronski,et al.  Carrier recombination and differential diode quality factors in the dark forward bias current-voltage characteristics of a‐Si:H solar cells , 2005 .

[26]  Arvind Shah,et al.  Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? , 1994 .

[27]  Soo-Hyun Kim,et al.  Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology , 2013 .

[28]  K. Lips,et al.  Defect and Tail States in Microcrystalline Silicon investigated by pulsed ESR , 2000 .

[29]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[30]  S. Hegedus Current–Voltage Analysis of a-Si and a-SiGe Solar Cells Including Voltage-dependent Photocurrent Collection , 1997 .

[31]  Subhendu Guha,et al.  High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon , 2013 .

[32]  F. Finger,et al.  A-Si:H buffer in a-SiGe:H solar cells , 2002 .

[33]  Bernd Rech,et al.  Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer , 2007 .