Precision tracking control of a piezoelectric-actuated system

Abstract In this paper, precision tracking control of piezoelectric-actuated systems is discussed. In order to obtain precision tracking control, a modified Prandtl–Ishlinskii (MPI) model is used to model the hysteresis nonlinearity. Then, the inverse MPI model is used to reduce the hysteresis nonlinearity, and a sliding-mode controller is used to compensate for the remaining nonlinear uncertainty and disturbances. In general, the piezoelectric-actuated system can be modeled as a linear model coupled with a hysteresis. When the linear model is identified, it is used to design the sliding-mode controller. Finally, this design method is applied to the motion control of a nano-stage, and experimental results are presented to verify the usefulness of this method.

[1]  Ye-Hwa Chen,et al.  Piezomechanics using intelligent variable-structure control , 2001, IEEE Trans. Ind. Electron..

[2]  Orest Iftime,et al.  Proceedings of the 16th IFAC World congress , 2006 .

[3]  Chih-Lyang Hwang,et al.  A reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis , 2003, IEEE Trans. Neural Networks.

[4]  Jing-Chung Shen,et al.  H∞ Control and Sliding Mode Control of Magnetic Levitation System , 2008 .

[5]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[6]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[7]  Vincent Hayward,et al.  Phase control approach to hysteresis reduction , 2001, IEEE Trans. Control. Syst. Technol..

[8]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[9]  Chien-Hung Liu,et al.  INTEGRAL SLIDING-MODE CONTROL OF A PIEZOELECTRIC-ACTUATED MOTION STAGE , 2005 .

[10]  Yi-Cheng Huang,et al.  ULTRA‐FINE TRACKING CONTROL ON PIEZOELECTRIC ACTUATED MOTION STAGE USING PIEZOELECTRIC HYSTERETIC MODEL , 2008 .

[11]  Sabri Cetinkunt,et al.  Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner , 2000 .

[12]  J.-H. Xu Neural network control of a piezo tool positioner , 1993, Proceedings of Canadian Conference on Electrical and Computer Engineering.

[13]  Gang Tao,et al.  Adaptive control of plants with unknown hystereses , 1995 .

[14]  Cameron N. Riviere,et al.  Modeling rate-dependent hysteresis in piezoelectric actuators , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[15]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .