Improving the statistical efficiency of computer simulation experiments

Abstract Simulation experiments may generally be regarded as statistical experiments driven by random inputs. Therefore, the results of any simulation model represent estimates (random outputs) characterized by experimental errors. To obtain improved estimates and to increase the statistical efficiency of the simulation (as measured by the variances of the output random variables), various types of variance-reduction techniques are utilized. This paper focuses on some of these techniques.

[1]  George S. Fishman,et al.  Bias Considerations in Simulation Experiments , 1972, Oper. Res..

[2]  R. Cheng,et al.  Control Variables with Known Mean and Variance , 1980 .

[3]  J. Kiefer,et al.  Asymptotically Optimum Sequential Inference and Design , 1963 .

[4]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .

[5]  Thomas H. Naylor,et al.  The design of computer simulation experiments , 1969 .

[6]  R. D. Wright,et al.  On the Effectiveness of Common Random Numbers , 1979 .

[7]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[8]  Yosef S. Sherif,et al.  Reliability—risks, resources, rewards , 1981 .

[9]  P. A. Bobillier,et al.  Simulation With Gpss and Gpss V , 1976 .

[10]  G. S. Fishman Principles of Discrete Event Simulation , 1978 .

[11]  Lee W. Schruben,et al.  Detecting Initialization Bias in Simulation Output , 1982, Oper. Res..

[12]  Douglas C. Montgomery,et al.  Using common random numbers in simulation experiments — an approach to statistical analysis , 1976 .

[13]  Paul Bratley,et al.  A guide to simulation , 1983 .

[14]  Jack P. C. Kleijnen,et al.  Statistical Techniques in Simulation , 1977, IEEE Transactions on Systems, Man and Cybernetics.

[15]  Nils I. Arvidsen,et al.  Variance reduction through negative correlation, a simulation study , 1982 .

[16]  W. R. Franta A Note On Random Variate Generators And Antithetic Sampling , 1975 .

[17]  J. Hammersley,et al.  A new Monte Carlo technique: antithetic variates , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Steven D. Duket,et al.  Examination of simulation output using spectral methods , 1978 .

[19]  Thomas H. Naylor,et al.  Design of computer simulation experiments for industrial systems , 1966, CACM.

[20]  Jack P. C. Kleijnen Antithetic Variates, Common Random Numbers and Optimal Computer Time Allocation in Simulation , 1975 .

[21]  George S. Fishman,et al.  Variance reduction in simulation studies , 1972 .

[22]  Jack P. C. Kleijnen,et al.  Design and analysis of simulations: practical statistical techniques , 1977 .

[23]  Edward Ignall,et al.  Virtual Measures: A Variance Reduction Technique for Simulation , 1975 .

[24]  A. A. Crane,et al.  An introduction to the regenerative method for simulation analysis , 1977 .

[25]  T. Wonnacott,et al.  SPECTRAL ANALYSIS OF DATA GENERATED BY SIMULATION EXPERIMENTS WITH ECONOMETRIC MODELS , 1969 .