Asymptotic homogenization of laminated piezocomposite materials

Abstract The objective of this paper is to apply the technique of asymptotic homogenization to determine the effective elastic, piezoelectric and dielectric moduli of a laminated piezocomposite medium with a periodic structure. Each periodic cell of the medium can possess any finite number of piezoelectric layers. The general formulae obtained are a generalization of those that appear in chapter 5 of Pobedria (Pobedria, B. E. (1984) Mechanics of Composite Materials . Moscow State University Press, Moscow (in Russian)) and involve both cases of Newnham's connectivity theory (Newnham, R. E., Skinner, D. P. and Cross, L. E. (1978) Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin 13 , 525–536) for layered piezoelectric media. We calculate explicitly overall effective characteristics for three examples of such layered media. For the particular case of a binary layered medium, connected in parallel, with transversely isotropic constituents such formulae transform exactly to the formulae for effective constants obtained by Benveniste et al. (1992) in which a different method of homogenization was used. Finally, we apply these results to a piezocomposite material and obtain new piezoelectric with better global properties for hydrophone applications.

[1]  E. Dieulesaint,et al.  Ondes élastiques dans les solides : application au traitement du signal , 1974 .

[2]  J. J. Telega,et al.  Homogenization and thermopiezoelectricity , 1992 .

[3]  W. A. Smith,et al.  Modeling 1-3 composite piezoelectrics: hydrostatic response , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[5]  J. Unsworth,et al.  Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications , 1989 .

[6]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[7]  Ahmad Safari,et al.  Overview of Fine‐Scale Piezoelectric Ceramic/Polymer Composite Processing , 1995 .

[8]  Y. Benveniste,et al.  Uniform fields and universal relations in piezoelectric composites , 1992 .

[9]  Gérard A. Maugin,et al.  Continuum Mechanics of Electromagnetic Solids , 1989 .

[10]  A. Grekov,et al.  Anomalous behavior of the two-phase lamellar piezoelectric texture , 1987 .

[11]  Robert E. Newnham,et al.  An experimental and theoretical study of 1–3 AND 1-3-0 piezoelectric PZT-Polymer composites for hydrophone applications , 1986 .

[12]  Gérard A. Maugin,et al.  Continuum models and discrete systems , 1990 .

[13]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[14]  L. E. Cross,et al.  Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites , 1985, IEEE Transactions on Sonics and Ultrasonics.

[15]  Gérard A. Maugin,et al.  On the linear piezoelectricity of composite materials , 1991 .

[16]  H. Chan,et al.  Electromechanical properties of 1-3 piezoelectric ceramic/piezoelectric polymer composites , 1994 .

[17]  Don Berlincourt,et al.  3 – Piezoelectric and Piezomagnetic Materials and Their Function in Transducers , 1964 .