EMPIRICAL CONSTRAINTS ON PROTON AND ELECTRON HEATING IN THE FAST SOLAR WIND

We analyze measured proton and electron temperatures in the high-speed solar wind in order to calculate the separate rates of heat deposition for protons and electrons. When comparing with other regions of the heliosphere, the fast solar wind has the lowest density and the least frequent Coulomb collisions. This makes the fast wind an optimal testing ground for studies of collisionless kinetic processes associated with the dissipation of plasma turbulence. Data from the Helios and Ulysses plasma instruments were collected to determine mean radial trends in the temperatures and the electron heat conduction flux between 0.29 and 5.4 AU. The derived heating rates apply specifically for these mean plasma properties and not for the full range of measured values around the mean. We found that the protons receive about 60% of the total plasma heating in the inner heliosphere, and that this fraction increases to approximately 80% by the orbit of Jupiter. A major factor affecting the uncertainty in this fraction is the uncertainty in the measured radial gradient of the electron heat conduction flux. The empirically derived partitioning of heat between protons and electrons is in rough agreement with theoretical predictions from a model of linear Vlasov wave damping. For a modeled power spectrum consisting only of Alfvénic fluctuations, the best agreement was found for a distribution of wavenumber vectors that evolves toward isotropy as distance increases.

[1]  Christopher J. Smith,et al.  THE TURBULENT CASCADE AND PROTON HEATING IN THE SOLAR WIND AT 1 AU , 2009 .

[2]  W. Matthaeus,et al.  SPECTRAL INDICES FOR MULTI-DIMENSIONAL INTERPLANETARY TURBULENCE AT 1 AU , 2009 .

[3]  S. Cranmer,et al.  ION TEMPERATURES IN THE LOW SOLAR CORONA: POLAR CORONAL HOLES AT SOLAR MINIMUM , 2008, 0810.0018.

[4]  Robert W. Ebert,et al.  Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations , 2009 .

[5]  A. Lazarus,et al.  Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation. , 2008, Physical review letters.

[6]  J. Borovsky,et al.  Damping of long‐wavelength kinetic Alfvén fluctuations: Linear theory , 2008 .

[7]  Sean Oughton,et al.  Anisotropic scaling of magnetohydrodynamic turbulence. , 2008, Physical review letters.

[8]  A. Noullez,et al.  Heating the Solar Wind by a Magnetohydrodynamic Turbulent Energy Cascade , 2008 .

[9]  W. Matthaeus,et al.  Turbulence transport throughout the heliosphere , 2007 .

[10]  Charles W. Smith,et al.  The Turbulent Cascade at 1 AU: Energy Transfer and the Third-Order Scaling for MHD , 2007 .

[11]  U. Feldman,et al.  Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations , 2007 .

[12]  Petr Hellinger,et al.  Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU , 2007 .

[13]  Kathleen E. Hamilton,et al.  Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU , 2007 .

[14]  S. Cranmer,et al.  Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence , 2007, astro-ph/0703333.

[15]  S. Wu,et al.  A Novel Numerical Implementation for Solar Wind Modeling by the Modified Conservation Element/Solution Element Method , 2007 .

[16]  J. Linker,et al.  A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results , 2006 .

[17]  Kathleen E. Hamilton,et al.  Interplanetary magnetic fluctuation anisotropy in the inertial range , 2006 .

[18]  M. Goldstein,et al.  A three‐dimensional MHD solar wind model with pickup protons , 2006 .

[19]  A. Lazarus,et al.  Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations , 2006 .

[20]  S. Cranmer,et al.  Ultraviolet spectroscopy of the extended solar corona , 2006 .

[21]  J. Richardson,et al.  Turbulent Heating of the Solar Wind by Newborn Interstellar Pickup Protons , 2006 .

[22]  S. Boldyrev On the Spectrum of Magnetohydrodynamic Turbulence , 2005, Physical review letters.

[23]  L. Milano,et al.  Anisotropy in Fast and Slow Solar Wind Fluctuations , 2005 .

[24]  M. Kivelson,et al.  Spatial correlation of solar-wind turbulence from two-point measurements. , 2005, Physical review letters.

[25]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[26]  S. Cranmer,et al.  On the Generation, Propagation, and Reflection of Alfvén Waves from the Solar Photosphere to the Distant Heliosphere , 2004, astro-ph/0410639.

[27]  P. Dmitruk,et al.  Test Particle Energization by Current Sheets and Nonuniform Fields in Magnetohydrodynamic Turbulence , 2004 .

[28]  J. Borovsky,et al.  Alfvén-cyclotron fluctuations: Linear Vlasov theory , 2004 .

[29]  E. Endeve,et al.  Helmet Streamers Gone Unstable: Two-Fluid Magnetohydrodynamic Models of the Solar Corona , 2004 .

[30]  M. Neugebauer Anisotropy and Alfvenicity of hourly fluctuations in the fast polar solar wind , 2004 .

[31]  P. Dmitruk,et al.  Turbulent dissipation in the solar wind and corona , 2003 .

[32]  M. Velli,et al.  A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations , 2003 .

[33]  S. Cranmer,et al.  Alfvénic Turbulence in the Extended Solar Corona: Kinetic Effects and Proton Heating , 2003, astro-ph/0305134.

[34]  Alan J. Lazarus,et al.  Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy , 2002 .

[35]  S. Cranmer Coronal Holes and the High-Speed Solar Wind , 2002 .

[36]  P. Isenberg,et al.  Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction , 2002 .

[37]  L. Milano,et al.  Coronal Heating Distribution Due to Low-Frequency, Wave-driven Turbulence , 2002, astro-ph/0204347.

[38]  Daan Hubert,et al.  Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations , 2001 .

[39]  Kunji Nakayama Statistical Theory of Anisotropic Magnetohydrodynamic Turbulence. II. Lagrangian Theory of Strong Shear Alfvén Turbulence , 2001 .

[40]  J. Linker,et al.  An empirically‐driven global MHD model of the solar corona and inner heliosphere , 2001 .

[41]  J. Richardson,et al.  Heating of the low‐latitude solar wind by dissipation of turbulent magnetic fluctuations , 2001 .

[42]  L. Milano,et al.  A Reduced Magnetohydrodynamic Model of Coronal Heating in Open Magnetic Regions Driven by Reflected Low-Frequency Alfvén Waves , 2001 .

[43]  L. Milano,et al.  Wave-driven Turbulent Coronal Heating in Open Field Line Regions: Nonlinear Phenomenological Model , 2001 .

[44]  E. Marsch,et al.  Heating and acceleration of coronal ions interacting with plasma waves through cyclotron and Landau resonance , 2001 .

[45]  E. Vishniac,et al.  The Anisotropy of Magnetohydrodynamic Alfvénic Turbulence , 2000 .

[46]  B. Bavassano,et al.  On the evolution of outward and inward Alfvénic fluctuations in the polar wind , 2000 .

[47]  E. Vishniac,et al.  The Anisotropy of MHD Alfv\'{e}nic Turbulence , 2000, astro-ph/0003403.

[48]  P. Kellogg Fluctuations and Ion Isotropy in the Solar Wind , 2000 .

[49]  V. Carbone,et al.  Effects of intermittency on interplanetary velocity and magnetic field fluctuations anisotropy , 1999 .

[50]  Charles W. Smith,et al.  Dissipation range dynamics: Kinetic Alfvn waves and the importance of , 1999 .

[51]  P. Dmitruk,et al.  Coronal Heating by Magnetohydrodynamic Turbulence Driven by Reflected Low-Frequency Waves , 1999 .

[52]  E. Scime,et al.  The electron heat flux in the polar solar wind: Ulysses observations , 1999 .

[53]  W. Matthaeus,et al.  Turbulence, spatial transport, and heating of the solar wind , 1999 .

[54]  E. Quataert,et al.  Turbulence and Particle Heating in Advection-dominated Accretion Flows , 1998, astro-ph/9803112.

[55]  E. Marsch,et al.  Solar Wind Models from the Sun to 1 AU: Constraints by in Situ and Remote Sensing Measurements , 1999 .

[56]  George B. Field,et al.  Spectroscopic Constraints on Models of Ion Cyclotron Resonance Heating in the Polar Solar Corona and High-Speed Solar Wind , 1998 .

[57]  Giampiero Naletto,et al.  UVCS/SOHO Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona , 1998 .

[58]  M. Moncuquet,et al.  Solar wind radial and latitudinal structure: Electron density and core temperature from Ulysses thermal noise spectroscopy , 1998 .

[59]  E. Quataert Particle Heating by Alfvénic Turbulence in Hot Accretion Flows , 1997, astro-ph/9710127.

[60]  W. Matthaeus,et al.  Evolution of turbulent magnetic fluctuation power with heliospheric distance , 1996 .

[61]  E. Olsen,et al.  Erratum: ``An eight-moment approximation two-fluid model of the solar wind'' , 1996 .

[62]  James A. Miller,et al.  Stochastic Electron Acceleration by Cascading Fast Mode Waves in Impulsive Solar Flares , 1996 .

[63]  W. Matthaeus,et al.  Dominant two‐dimensional solar wind turbulence with implications for cosmic ray transport , 1996 .

[64]  T. Horbury,et al.  Anisotropy of inertial range turbulence in the polar heliosphere , 1995 .

[65]  E. Leer,et al.  Coronal Heating and Solar Wind Energy Balance , 1995 .

[66]  V. Hansteen,et al.  Coronal heating, densities, and temperatures and solar wind acceleration , 1995 .

[67]  P. C. Gray,et al.  Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence , 1995 .

[68]  M. Goldstein,et al.  Turbulent heating and temperature evolution in the solar wind plasma , 1995 .

[69]  L. L. Williams Heat flux and viscosity of ions in the collisionless solar wind , 1995 .

[70]  Eckart Marsch,et al.  MHD structures, waves and turbulence in the solar wind: Observations and theories , 1995 .

[71]  J. Phillips,et al.  Radial and meridional trends in solar wind thermal electron temperature and anisotropy: Ulysses , 1995 .

[72]  J. Freeman,et al.  An empirical determination of the polytropic index for the free‐streaming solar wind using Helios 1 data , 1995 .

[73]  W. Feldman,et al.  Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations , 1994 .

[74]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[75]  Joseph P. Dougherty,et al.  Waves in plasmas. , 1993 .

[76]  J. Freeman,et al.  Estimates of solar wind velocity gradients between 0.3 and 1 AU based on velocity probability distributions from Helios 1 at perihelion and aphelion , 1991 .

[77]  S. Spangler The Dissipation of Magnetohydrodynamic Turbulence Responsible for Interstellar Scintillation and the Heating of the Interstellar Medium , 1991 .

[78]  L. Klein,et al.  Anisotropy and minimum variance directions of solar wind fluctuations in the outer heliosphere , 1991 .

[79]  W. Matthaeus,et al.  Transport and turbulence modeling of solar wind fluctuations , 1990 .

[80]  E. Marsch,et al.  On the origin of solar wind MHD turbulence: Helios data revisited , 1990 .

[81]  H. Rosenbauer,et al.  Large‐scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU , 1990 .

[82]  J. Phillips,et al.  Radial evolution of solar wind thermal electron distributions due to expansion and collisions , 1990 .

[83]  J. Freeman Estimates of solar wind heating inside 0.3 AU , 1988 .

[84]  C. Tu The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind , 1988 .

[85]  J. Freeman,et al.  Solar wind proton temperature‐velocity relationship , 1986 .

[86]  J. Higdon Density fluctuations in the interstellar medium: evidence for anisotropic magnetogasdynamic turbulen , 1984 .

[87]  P. Isenberg Resonant acceleration and heating of solar wind ions: Anisotropy and dispersion , 1984 .

[88]  W. Matthaeus,et al.  Magnetohydrodynamic turbulence in the solar wind , 1999 .

[89]  N. Ness,et al.  Statistical properties of MHD fluctuations associated with high-speed streams from Helios-2 observations , 1982 .

[90]  R. Schunk,et al.  Transport equations for multicomponent anisotropic space plasmas - A review , 1982 .

[91]  T. Holzer,et al.  Acceleration of the solar wind , 1982 .

[92]  H. Rosenbauer,et al.  Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU , 1982 .

[93]  R. Steinitz,et al.  Global properties of the solar wind. II - Empirical proton temperature gradients and their dependence on flow velocity , 1981 .

[94]  J. Scudder,et al.  An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU: Voyager 2 and Mariner 10 , 1980 .

[95]  Pierluigi Veltri,et al.  Fully developed anisotropic hydromagnetic turbulence in interplanetary space , 1980 .

[96]  J. Scudder,et al.  A theory of local and global processes which affect solar wind electrons 2. Experimental support , 1979 .

[97]  D. Eichler Particle acceleration in solar flares by cyclotron damping of cascading turbulence , 1979 .

[98]  D. Fyfe,et al.  Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics , 1977, Journal of Plasma Physics.

[99]  J. Hollweg,et al.  Collisionless electron heat conduction in the solar wind , 1976 .

[100]  J. Hollweg,et al.  On electron heat conduction in the solar wind , 1974 .

[101]  F. Perkins HEAT CONDUCTIVITY, PLASMA INSTABILITIES, AND RADIO STAR SCINTILLATIONS IN THE SOLAR WIND. , 1973 .

[102]  A. Harten,et al.  NONCOLLISIONAL COUPLING BETWEEN THE ELECTRON AND THE PROTON COMPONENTS IN THE TWO-FLUID MODEL OF THE SOLAR WIND. , 1970 .

[103]  P. Coleman Turbulence, viscosity, and dissipation in the solar-wind plasma , 1968 .

[104]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[105]  R. E. Marshak,et al.  Interplanetary Dynamical Processes , 1963 .

[106]  D. E. Kerr Physics of Fully Ionized Gases. , 1956 .

[107]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .