Blood viscosity in microvessels: experiment and theory.

[1]  Robin Fåhræus,et al.  THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES , 1931 .

[2]  V. Vand Viscosity of solutions and suspensions; theory. , 1948, The Journal of physical and colloid chemistry.

[3]  M. J. Lighthill,et al.  Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes , 1968, Journal of Fluid Mechanics.

[4]  A. Barnard,et al.  Basic theory of blood flow in capillaries , 1968 .

[5]  G. Bugliarello,et al.  Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. , 1970, Biorheology.

[6]  R M Hochmuth,et al.  Membrane viscoelasticity. , 1976, Biophysical journal.

[7]  H. H. Lipowsky,et al.  The Distribution of Blood Rheological Parameters in the Microvasculature of Cat Mesentery , 1978, Circulation research.

[8]  S Chien,et al.  In vivo measurements of "apparent viscosity" and microvessel hematocrit in the mesentery of the cat. , 1980, Microvascular research.

[9]  P. Gaehtgens,et al.  Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. , 1980, Blood cells.

[10]  L. G. Leal,et al.  Particle Motions in a Viscous Fluid , 1980 .

[11]  E. Evans Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. , 1983, Biophysical journal.

[12]  R. Skalak,et al.  Flow of axisymmetric red blood cells in narrow capillaries , 1986, Journal of Fluid Mechanics.

[13]  T. Secomb Flow-dependent rheological properties of blood in capillaries. , 1987, Microvascular research.

[14]  A. Acrivos,et al.  The shear-induced migration of particles in concentrated suspensions , 1987, Journal of Fluid Mechanics.

[15]  T W Secomb,et al.  Motion of nonaxisymmetric red blood cells in cylindrical capillaries. , 1989, Journal of biomechanical engineering.

[16]  A. Pries,et al.  Red cell distribution at microvascular bifurcations. , 1989, Microvascular research.

[17]  A. Pries,et al.  Blood flow in microvascular networks. Experiments and simulation. , 1990, Circulation research.

[18]  A. Pries,et al.  Resistance to blood flow in microvessels in vivo. , 1994, Circulation research.

[19]  E. Evans,et al.  Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. , 1994, Science.

[20]  B. Duling,et al.  Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. , 1996, Circulation research.

[21]  R. Hsu,et al.  Resistance to Blood Flow in Nonuniform Capillaries , 1997, Microcirculation.

[22]  E. Damiano The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. , 1998, Microvascular research.

[23]  Sheldon Weinbaum,et al.  Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans , 2000, Journal of Fluid Mechanics.

[24]  T. W. Secomb,et al.  The endothelial surface layer , 2000, Pflügers Archiv.

[25]  A. Pries,et al.  Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. , 2001, Biorheology.

[26]  A. Pries,et al.  Blood Flow and Red Blood Cell Deformation in Nonuniform Capillaries: Effects of the Endothelial Surface Layer , 2002, Microcirculation.

[27]  Stephen C. Cowin,et al.  Mechanotransduction and flow across the endothelial glycocalyx , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Daniel T Chiu,et al.  A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Biben,et al.  Optimal lift force on vesicles near a compressible substrate , 2004 .

[30]  C. Pozrikidis Axisymmetric motion of a file of red blood cells through capillaries , 2005 .

[31]  A. Pries,et al.  Microvascular blood viscosity in vivo and the endothelial surface layer. , 2005, American journal of physiology. Heart and circulatory physiology.

[32]  L. Mahadevan,et al.  Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts , 2004, cond-mat/0412509.

[33]  A. Undar,et al.  A microfluidic device for continuous, real time blood plasma separation. , 2006, Lab on a chip.

[34]  Magalie Faivre,et al.  High-speed microfluidic differential manometer for cellular-scale hydrodynamics. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  L Mahadevan,et al.  Sickle cell vasoocclusion and rescue in a microfluidic device , 2007, Proceedings of the National Academy of Sciences.

[36]  A. Pries,et al.  Two-Dimensional Simulation of Red Blood Cell Deformation and Lateral Migration in Microvessels , 2007, Annals of Biomedical Engineering.

[37]  Gwennou Coupier,et al.  Noninertial lateral migration of vesicles in bounded Poiseuille flow , 2008, 0803.3153.

[38]  Sai K. Doddi,et al.  Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  V. Martinelli,et al.  Red blood cell deformation in microconfined flow , 2009 .

[40]  J. McWhirter,et al.  Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries , 2009, Proceedings of the National Academy of Sciences.

[41]  G. Karniadakis,et al.  Blood Flow and Cell‐Free Layer in Microvessels , 2010, Microcirculation.

[42]  Alison M. Forsyth,et al.  The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows. , 2010, Microvascular research.

[43]  Alison M. Forsyth,et al.  Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release , 2011, Proceedings of the National Academy of Sciences.

[44]  Alison M. Forsyth,et al.  Red blood cell dynamics: from cell deformation to ATP release. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[45]  Michael D. Graham,et al.  Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids , 2012 .

[46]  G. Karniadakis,et al.  Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study , 2012, Physical biology.

[47]  R. Kamm,et al.  Microfluidic models of vascular functions. , 2012, Annual review of biomedical engineering.

[48]  T. Secomb,et al.  Motion of red blood cells near microvessel walls: effects of a porous wall layer , 2012, Journal of Fluid Mechanics.