First Principles Prediction of Topological Phases in Thin Films of Pyrochlore Iridates

While the theoretical and experimental study of topological phases of matter has experienced rapid growth over the last few years, there remain a relatively small number of material classes that have been experimentally shown to host these phases. Most of these materials contain bismuth, and none so far are oxides. In this work we make materials-specific predictions for topological phases using density functional theory combined with Hartree-Fock theory that includes the full orbital structure of the relevant iridium d-orbitals and the strong but finite spin-orbit coupling strength. We find Y2Ir2O7 bilayer and trilayer films grown along the [111] direction can support topological metallic phases with a direct gap of up to 0.05 eV, which could potentially bring transition metal oxides to the fore as a new class of topological materials with potential applications in oxide electronics.

[1]  X. Hu,et al.  Electrically tunable topological state in [111] perovskite materials with an antiferromagnetic exchange field , 2013, 1301.4113.

[2]  William Witczak-Krempa,et al.  Correlation effects on 3D topological phases: from bulk to boundary. , 2012, Physical review letters.

[3]  W. Pickett,et al.  Confinement-driven transitions between topological and Mott phases in ( La Ni O 3 ) N / ( La Al O 3 ) M (111) superlattices , 2014, 1403.2314.

[4]  G. Fiete,et al.  Fractionalized topological insulators , 2015, Nature Physics.

[5]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[6]  M. Kramer,et al.  Innovative Powder Processing of Oxide Dispersion Strengthened ODS Ferritic Stainless Steels , 2011 .

[7]  X. Dai,et al.  Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO 3 , 2014, 1409.6797.

[8]  Cheng-Cheng Liu,et al.  Topological metallic phases in spin–orbit coupled bilayer systems , 2014, 1402.6502.

[9]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[10]  S. Okamoto,et al.  Possible interaction driven topological phases in (111) bilayers of LaNiO3 , 2011, 1109.1551.

[11]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[12]  Bohm-Jung Yang,et al.  Emergent topological phenomena in thin films of pyrochlore iridates. , 2014, Physical review letters.

[13]  Leon Balents,et al.  My title , 2013 .

[14]  T. Fukui,et al.  Quantum Spin Hall Effect in Three Dimensional Materials: Lattice Computation of Z2 Topological Invariants and Its Application to Bi and Sb , 2007 .

[15]  S. Murakami,et al.  Spin Anisotropy and Quantum Hall Effect in the Kagomé Lattice : Chiral Spin State based on a Ferromagnet , 1999, cond-mat/9912206.

[16]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[17]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[18]  David Vanderbilt,et al.  Effective J=1/2 insulating state in Ruddlesden-Popper iridates: an LDA+DMFT study. , 2013, Physical review letters.

[19]  A. Demkov,et al.  Lattice distortion effects on topological phases in (LaNiO 3 ) 2 /(LaAlO 3 ) N heterostructures grown along the [111] direction , 2013, 1306.1002.

[20]  H. Kee,et al.  Topological crystalline metal in orthorhombic perovskite iridates , 2014, Nature Communications.

[21]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[22]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[23]  A. Ruegg,et al.  Topological phases in oxide heterostructures with light and heavy transition metal ions (invited) , 2014, 1409.7148.

[24]  Leon Balents,et al.  Mott physics and band topology in materials with strong spin-orbit interaction , 2009, 0907.2962.

[25]  Wenguang Zhu,et al.  Correlation effects in (111) bilayers of perovskite transition-metal oxides , 2013, 1401.0009.

[26]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[27]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[28]  A. Ruegg,et al.  Topological insulators from complex orbital order in transition-metal oxides heterostructures , 2011, 1109.1297.

[29]  S. Okamoto,et al.  Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. , 2011, Nature communications.

[30]  A. Demkov,et al.  Electronic structure of (LaNiO$_3$)$_2$/(LaAlO$_3$)$_N$ heterostructures grown along [111] , 2012, 1204.0141.

[31]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[32]  A. Millis,et al.  Colloquium: Emergent properties in plane view: Strong correlations at oxide interfaces , 2014 .

[33]  G. Fiete,et al.  Topological order in a correlated three-dimensional topological insulator. , 2013, Physical review letters.

[34]  Yong Baek Kim,et al.  Topological and magnetic phases of interacting electrons in the pyrochlore iridates , 2011, 1105.6108.

[35]  G. Refael,et al.  Bulk metals with helical surface states , 2010, 1003.3018.

[36]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[37]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[38]  G. Sullivan,et al.  Evidence for helical edge modes in inverted InAs/GaSb quantum wells. , 2011, Physical review letters.

[39]  D. Baldomir,et al.  Ab initiostudy ofZ2topological phases in perovskite (111) (SrTiO3)7/(SrIrO3)2and (KTaO3)7/(KPtO3)2multilayers , 2013, 1306.2238.

[40]  A. Ruegg,et al.  Topological phases in layered pyrochlore oxide thin films along the [111] direction , 2012, 1211.0562.

[41]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[42]  G. Fiete,et al.  Competing exotic topological insulator phases in transition-metal oxides on the pyrochlore lattice with distortion , 2010, 1101.0007.

[43]  G. Fiete,et al.  Topological crystalline insulators in transition metal oxides. , 2012, Physical review letters.

[44]  L. Fu,et al.  Surface states and topological invariants in three-dimensional topological insulators: Application to Bi 1 − x Sb x , 2008 .

[45]  T. Fukui,et al.  Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances , 2005, cond-mat/0503172.

[46]  S. Okamoto Doped Mott insulators in (111) bilayers of perovskite transition-metal oxides with a strong spin-orbit coupling. , 2012, Physical review letters.

[47]  Yoichi Ando,et al.  Topological Insulator Materials , 2013, 1304.5693.

[48]  Y. Hinatsu,et al.  Magnetic properties of iridium pyrochlores R2Ir2O7 (R = Y, Sm, Eu and Lu) , 2001 .

[49]  B Andrei Bernevig,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[50]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.