SU ( N ) spin-wave theory: Application to spin-orbital Mott insulators

We present the application of the SU($N$) ($N>2$) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both the spin and orbital degrees of freedom into account rather than projecting onto the Kramers doublet, the lowest spin-orbital locking energy levels, due to the inevitable spin-orbital multipole exchange interactions, the SU($N$) spin-wave theory should take the place of the SU($2$) one. To implement the application, we introduce an efficient general local mean field approach which involves all the local fluctuations into the SU($N$) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU($4$) antiferromagnetic model. Then we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-$1/2$ representation when the spin orbital coupling is not large enough. Besides, we also calculate the spin-wave spectra based on the first principle calculations for two concrete materials, $\alpha$-RuCl$_3$ and Sr$_2$IrO$_4$. The SU($N$) spin-wave theory appropriately depicts the low-energy magnons and the spin-orbital excitations qualitatively.

[1]  F. Mila,et al.  Linear flavor-wave theory for fully antisymmetric SU(N ) irreducible representations , 2017, 1711.05089.

[2]  A. Banerjee,et al.  Neutron scattering in the proximate quantum spin liquid α-RuCl3 , 2017, Science.

[3]  A. Honecker,et al.  Breakdown of magnons in a strongly spin-orbital coupled magnet , 2017, Nature Communications.

[4]  S. Danilkin,et al.  Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α-RuCl_{3}. , 2017, Physical review letters.

[5]  Zhao-Yang Dong,et al.  Theoretical investigation of magnetic dynamics in α − RuCl 3 , 2016, 1612.09515.

[6]  F. Mila,et al.  Plaquette order in the SU(6) Heisenberg model on the honeycomb lattice , 2016, 1601.00959.

[7]  H. Kandpal,et al.  J_{eff} Description of the Honeycomb Mott Insulator α-RuCl_{3}. , 2016, Physical review letters.

[8]  R. Valentí,et al.  Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales , 2016, 1603.02548.

[9]  P. Manuel,et al.  Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α − Li 2 IrO 3 , 2016, 1602.07990.

[10]  H. Kee,et al.  Spin-orbit excitations and electronic structure of the putative Kitaev magnet α − RuCl 3 , 2015, 1503.07593.

[11]  Hong Liu,et al.  Spin Casimir effect in noncollinear quantum antiferromagnets: Torque equilibrium spin wave approach , 2015 .

[12]  Jian-xin Li,et al.  Fermi arcs, pseudogap, and collective excitations in doped Sr 2 IrO 4 : A generalized fluctuation exchange study , 2015, 1503.02544.

[13]  H. Kee,et al.  Kitaev magnetism in honeycomb RuCl 3 with intermediate spin-orbit coupling , 2014, 1411.6623.

[14]  Yang Zhao,et al.  Magnetic order in α -RuCl 3 : A honeycomb-lattice quantum magnet with strong spin-orbit coupling , 2014, 1411.4610.

[15]  A. Bombardi,et al.  Unconventional magnetic order on the hyperhoneycomb Kitaev lattice inβ−Li2IrO3: Full solution via magnetic resonant x-ray diffraction , 2014, 1408.0246.

[16]  Jungho Kim,et al.  Excitonic quasiparticles in a spin–orbit Mott insulator , 2014, Nature Communications.

[17]  A. Vishwanath,et al.  Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γ-Li(2)IrO(3). , 2014, Physical review letters.

[18]  Y. Kato,et al.  Generalized spin-wave theory: Application to the bilinear–biquadratic model , 2013, 1307.7731.

[19]  Yong Baek Kim,et al.  Correlated Quantum Phenomena in the Strong Spin-Orbit Regime , 2013, 1305.2193.

[20]  K. Penc,et al.  Multiboson spin-wave theory for Ba2CoGe2O 7: A spin-3/2 easy-plane Néel antiferromagnet with strong single-ion anisotropy , 2012, 1205.2196.

[21]  Jungho Kim,et al.  Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic x-ray scattering: establishing links to cuprate superconductors. , 2012, Physical review letters.

[22]  Y. Tokura,et al.  Spin-stretching modes in anisotropic magnets: spin-wave excitations in the multiferroic Ba2CoGe2O7. , 2012, Physical review letters.

[23]  Matthias Troyer,et al.  Three-sublattice order in the SU(3) Heisenberg model on the square and triangular lattice , 2011, 1112.1100.

[24]  J. van den Brink,et al.  Dispersion of orbital excitations in 2D quantum antiferromagnets , 2011, 1111.5522.

[25]  T. Xiang,et al.  Plaquette order and deconfined quantum critical point in the spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice , 2011, 1105.2716.

[26]  J. van den Brink,et al.  Intrinsic coupling of orbital excitations to spin fluctuations in Mott insulators. , 2011, Physical review letters.

[27]  Hsiang-hsuan Hung,et al.  Quantum magnetism in ultracold alkali and alkaline-earth fermion systems with symplectic symmetry , 2011 .

[28]  T. Berlijn,et al.  Long-range magnetic ordering in Na 2 IrO 3 , 2011, 1104.4046.

[29]  L. Balents,et al.  Exotic phases induced by strong spin-orbit coupling in ordered double perovskites , 2010, 1009.5115.

[30]  S. Yunoki,et al.  Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides. , 2010, Physical review letters.

[31]  P. Santini,et al.  Multipolar interactions in f -electron systems: The paradigm of actinide dioxides , 2009 .

[32]  S. Sakai,et al.  Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4 , 2009, Science.

[33]  A. Chernyshev,et al.  Spin waves in a triangular lattice antiferromagnet: Decays, spectrum renormalization, and singularities , 2009, 0901.4803.

[34]  R. Fishman,et al.  Spin rotation technique for non-collinear magnetic systems: application to the generalized Villain model , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.

[36]  Yang Qi,et al.  Quantum phase transitions beyond the Landau paradigm in a Sp(4) spin system , 2008, 0803.3822.

[37]  Jaejun Yu,et al.  Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. , 2008, Physical review letters.

[38]  J. M. Kim,et al.  Ferromagnetism in the Mott insulator Ba2NaOsO6. , 2006, Physical review letters.

[39]  S. Ishihara Orbital wave and its observation in orbital-ordered titanates and vanadates , 2003, cond-mat/0309538.

[40]  M. Inguscio,et al.  Production of a Fermi gas of atoms in an optical lattice , 2003, cond-mat/0304242.

[41]  Shou-Cheng Zhang,et al.  Exact SO(5) symmetry in the spin-3/2 fermionic system. , 2003, Physical review letters.

[42]  M. Troyer,et al.  Néel and Spin-Peierls ground states of two-dimensional SU(N) quantum antiferromagnets. , 2002, Physical review letters.

[43]  Y. Kuramoto,et al.  Spin-Orbital Wave Excitations in Orbitally Degenerate Exchange Model with Multipolar Interactions , 2001, cond-mat/0104274.

[44]  Y. Tokura,et al.  Observation of orbital waves as elementary excitations in a solid , 2001, Nature.

[45]  T. Ho,et al.  ZERO SOUND MODES OF DILUTE FERMI GASES WITH ARBITRARY SPIN , 1999 .

[46]  J. Brink,et al.  Orbital dynamics in ferromagnetic transition metal oxides , 1998, cond-mat/9812123.

[47]  T. Ho,et al.  Pairing of Fermions with Arbitrary Spin , 1998, cond-mat/9808246.

[48]  F. Mila,et al.  Elementary excitations in magnetically ordered systems with orbital degeneracy , 1998, cond-mat/9812289.

[49]  J. Brink,et al.  Elementary excitations in the coupled spin-orbital model , 1998 .

[50]  G. Khaliullin,et al.  SPIN AND ORBITAL EXCITATION SPECTRUM IN THE KUGEL-KHOMSKII MODEL , 1997, cond-mat/9710070.

[51]  Luo,et al.  Scattering operator for elastic and inelastic resonant x-ray scattering. , 1993, Physical review letters.

[52]  Takahashi,et al.  Modified spin-wave theory of a square-lattice antiferromagnet. , 1989, Physical review. B, Condensed matter.

[53]  Auerbach,et al.  Functional integral theories of low-dimensional quantum Heisenberg models. , 1988, Physical review. B, Condensed matter.

[54]  J. Colpa Diagonalization of the quadratic boson hamiltonian , 1978 .

[55]  I. Ortenburger,et al.  Diagonalization of the Antiferromagnetic Magnon-Phonon Interaction , 1965 .