A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications

Abstract Thermochemical energy storage (TCES) systems have attracted great interest in concentrated solar power (CSP) applications during past years. Storing sunlight as chemical energy during the day enables us to use it at night or during cloudy periods, which alleviates the inherent intermittency of solar sourced energy. Metal oxides are among the most attractive TCES materials, as they possess high-energy density and high reduction/oxidation temperatures which are suitable for driving high-efficiency thermodynamic power cycles. Although various candidate materials have already been introduced in metal/mixed-metal oxide TCES technologies, material selection is still a challenging process, since it has a profound impact on overall cost and performance of TCES technologies. This article focuses on a comprehensive literature survey on material screening in metal/mixed-metal oxide TCES systems introducing pros and cons of each candidate material. Although the screening indicated high potential candidate materials for TCES technologies, further investigations are required in this field to develop TCES systems which are compatible with CSP applications.

[1]  D. Serrano,et al.  Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage , 2016 .

[2]  Wojciech Lipiński,et al.  Multitube Rotary Kiln for the Industrial Solar Production of Lime , 2005 .

[3]  Anders Lyngfelt,et al.  Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling , 2014 .

[4]  M. McCann,et al.  EXERGY ANALYSIS OF AMMONIA-BASED SOLAR THERMOCHEMICAL POWER SYSTEMS , 1999 .

[5]  S. Khare,et al.  Selection of materials for high temperature sensible energy storage , 2013 .

[6]  Guy Ervin,et al.  Solar heat storage using chemical reactions , 1977 .

[7]  Hiroyuki Kage,et al.  Studies on applicability of scallop material to calcium oxide/calcium hydroxide chemical heat pump , 2004 .

[8]  Christian Sattler,et al.  Solar-heated rotary kiln for thermochemical energy storage , 2012 .

[9]  C. Sattler,et al.  Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 6: Testing of Mn-based combined oxides and porous structures , 2017 .

[10]  Souzana Lorentzou,et al.  Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants , 2014 .

[11]  E. Fuentealba,et al.  Use of rotary kilns for solar thermal applications: Review of developed studies and analysis of their potential , 2017 .

[12]  K. Fitzner,et al.  Activities in the spinel solid solution, phase equilibria and thermodynamic properties of ternary phases in the system Cu-Fe-0 , 1977 .

[13]  G. Flamant,et al.  Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage , 2016 .

[14]  Yoshio Yoshizawa,et al.  Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system , 2005 .

[15]  Ali H. Abedin,et al.  A Critical Review of Thermochemical Energy Storage Systems , 2011 .

[16]  D. Serrano,et al.  Design of efficient Mn-based redox materials for thermochemical heat storage at high temperatures , 2016 .

[17]  Ruzhu Wang,et al.  Integrated energy storage and energy upgrade, combined cooling and heating supply, and waste heat recovery with solid–gas thermochemical sorption heat transformer , 2014 .

[18]  J. D. Ford,et al.  Energy storage using the BaO2BaO reaction cycle , 1983 .

[19]  Zhonghao Rao,et al.  Challenges in various thermal energy storage technologies. , 2017, Science bulletin.

[20]  Ruzhu Wang,et al.  Experimental investigation on thermochemical heat storage using manganese chloride/ammonia , 2018 .

[21]  S. C. Solanki,et al.  Heat transfer characteristics of thermal energy storage system using PCM capsules: A review , 2008 .

[22]  M. Powell,et al.  Metal Hydrides for High-Temperature Power Generation , 2015 .

[23]  R. Tamme,et al.  High Temperature Thermochemical Heat Storage for Concentrated Solar Power Using Gas–Solid Reactions , 2011 .

[24]  Hitoki Matsuda,et al.  Study of Carbonation Reactions of Ca-Mg Oxides for High Temperature Energy Storage and Heat Transformation , 1996 .

[25]  Xinhai Xu,et al.  Heat transfer fluids for concentrating solar power systems – A review , 2015 .

[26]  Martin Schmücker,et al.  Metal oxides for thermochemical energy storage: A comparison of several metal oxide systems , 2016 .

[27]  Christian Sattler,et al.  Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts , 2014 .

[28]  Jan Degrève,et al.  Thermochemical Energy Storage for Power Generation on Demand , 2016 .

[29]  Rhys Jacob,et al.  Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies , 2016 .

[30]  Elias K. Stefanakos,et al.  Thermal energy storage technologies and systems for concentrating solar power plants , 2013 .

[31]  G. Flamant,et al.  52 Decarbonation of calcite and phosphate rock in solar chemical reactors. , 1980 .

[32]  C. Sattler,et al.  Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: Redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers , 2015 .

[33]  A. Navrotsky,et al.  Thermodynamic Properties of Manganese Oxides , 1996 .

[34]  C. Estrada,et al.  An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities , 2017 .

[35]  Valentin N. Parmon,et al.  Chemical heat pump using heat of reversible catalytic reactions , 1987 .

[36]  A. Ambrosini,et al.  Investigation of LaxSr1−xCoyM1−yO3−δ (M = Mn, Fe) perovskite materials as thermochemical energy storage media , 2015 .

[37]  P. Wei,et al.  In situ high-temperature X-ray and neutron diffraction of Cu–Mn oxide phases , 2010 .

[38]  R. G. Bowrey,et al.  Energy storage using the reversible oxidation of barium oxide , 1978 .

[39]  C. Sattler,et al.  A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage , 2016 .

[40]  Craig E. Buckley,et al.  Metal hydride thermal heat storage prototype for concentrating solar thermal power , 2015 .

[41]  Huili Zhang,et al.  Thermal energy storage: Recent developments and practical aspects , 2016 .

[42]  Bing Zhao,et al.  Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power , 2017 .

[43]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[44]  P. O. Carden Energy corradiation using the reversible ammonia reaction , 1977 .

[45]  G. Iyengar,et al.  Oxygen potentials, Gibbs' energies and phase relations in the Cu-Cr-O system , 1986 .

[46]  G. Karagiannakis,et al.  Cobalt Oxide Based Honeycombs as Reactors/Heat Exchangers for Redox Thermochemical Heat Storage in Future CSP Plants , 2015 .

[47]  Hiroyuki Kage,et al.  Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling , 2003 .

[48]  A. Deydier,et al.  A review on high temperature thermochemical heat energy storage , 2014 .

[49]  Wayne E. Wentworth,et al.  Simple thermal decomposition reactions for storage of solar thermal energy , 1975 .

[50]  V. Berbenni,et al.  Oxidation behaviour of mechanically activated Mn3O4 by TGA/DSC/XRPD , 2003 .

[51]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.

[52]  E. Coker,et al.  Thermochemical Cycle of a Mixed Metal Oxide for Augmentation of Thermal Energy Storage in Solid Particles , 2014 .

[53]  Edward Fuentealba,et al.  Thermodynamic study of CuO/Cu2O and Co3O4/CoO redox pairs for solar energy thermochemical storage , 2016 .

[54]  Changying Zhao,et al.  Gas–solid thermochemical heat storage reactors for high-temperature applications , 2017 .

[55]  M. Idelson,et al.  Crystal morphology engineering by "tailor-made" inhibitors; a new probe to fine intermolecular interactions , 1985 .

[56]  Marc Linder,et al.  Investigations on thermochemical energy storage based on technical grade manganese-iron oxide in a lab-scale packed bed reactor , 2017 .

[57]  D. Serrano,et al.  Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage. , 2016, Physical chemistry chemical physics : PCCP.

[58]  M. Gallas,et al.  Performance comparison of a group of thermal conductivity enhancement methodology in phase change material for thermal storage application , 2016 .

[59]  R. Pitchumani,et al.  11 – Thermochemical energy storage for concentrating solar thermal (CST) systems , 2017 .

[60]  B. Bogdanovic,et al.  High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications , 2009, International journal of molecular sciences.

[61]  E. R. Stobbe,et al.  The reduction and oxidation behaviour of manganese oxides , 1999 .

[62]  Hans Müller-Steinhagen,et al.  A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage , 2012 .

[63]  H. Seifert,et al.  Thermodynamic Assessment of the Cu-Fe-O System , 2011 .

[64]  Anders Lyngfelt,et al.  Chemical-looping with oxygen uncoupling for combustion of solid fuels , 2009 .

[65]  Ruzhu Wang,et al.  A review on transportation of heat energy over long distance: Exploratory development , 2009 .

[66]  Keith Lovegrove,et al.  A Review of Ammonia-Based Thermochemical Energy Storage for Concentrating Solar Power , 2012, Proceedings of the IEEE.

[67]  J. Crum,et al.  Binary Phase Diagram of the Manganese Oxide–Iron Oxide System , 2009 .

[68]  M. N. Azpiazu,et al.  Heat recovery from a thermal energy storage based on the Ca(OH) 2 /CaO cycle , 2003 .

[69]  Theodore Motyka,et al.  Metal hydride based thermal energy storage system requirements for high performance concentrating solar power plants , 2016 .

[70]  S. Fujimoto,et al.  Dynamic simulation of CaO/Ca(OH)2 chemical heat pump systems , 2002 .

[71]  H. Müller-Steinhagen,et al.  De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part A: Experimental results , 2013 .

[72]  M. Schmücker,et al.  Thermodynamic and kinetic investigation of a technical grade manganese-iron binary oxide for thermochemical energy storage , 2017 .

[73]  Yoshio Yoshizawa,et al.  Utilization of high temperature heat from nuclear reactor using inorganic chemical heat pump , 1998 .

[74]  D. Serrano,et al.  Manganese oxide-based thermochemical energy storage: Modulating temperatures of redox cycles by Fe–Cu co-doping , 2016 .

[75]  R. Barker,et al.  The reversibility of the reaction CaCO3 ⇄ CaO+CO2 , 2007 .

[76]  Eric N. Coker,et al.  Metallic Phase Change Material Thermal Storage for Dish Stirling. , 2015 .

[77]  S. Mauran,et al.  Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed , 2012 .

[78]  G. Glatzmaier Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011 , 2011 .

[79]  A. Muan,et al.  The system iron oxide-manganese oxide in air , 1962 .

[80]  T. Ichikawa,et al.  Thermochemical energy storage by water-splitting via redox reaction of alkali metals , 2014 .

[81]  H. P. Garg,et al.  Solar Thermal Energy Storage , 1985 .

[82]  Keith Lovegrove,et al.  Theoretical analysis and experimental results of a 1 kWchem ammonia synthesis reactor for a solar thermochemical energy storage system , 1999 .

[84]  J. Jorda,et al.  Barium oxides: equilibrium and decomposition of BaO2 , 2001 .

[85]  Hitoki Matsuda,et al.  Applicability of Carbonation/Decarbonation Reactions to High-Temperature Thermal Energy Storage and Temperature Upgrading , 1996 .

[86]  Gilles Flamant,et al.  Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy , 2006 .

[87]  Yoshio Yoshizawa,et al.  Thermal analysis of a magnesium oxide/water chemical heat pump for cogeneration , 2001 .

[88]  Yoshio Yoshizawa,et al.  Kinetic study of the hydration of magnesium oxide for a chemical heat pump , 1996 .

[89]  F. Padella,et al.  Lithium manganese oxides as high-temperature thermal energy storage system , 2016 .

[90]  Yukitaka Kato,et al.  Study on medium-temperature chemical heat storage using mixed hydroxides , 2009 .

[91]  A. Muan,et al.  The System Manganese Oxide–Alumina in Air , 1962 .

[92]  S. Abanades,et al.  Kinetic analysis of high-temperature solid–gas reactions by an inverse method applied to ZnO and SnO2 solar thermal dissociation , 2013 .

[93]  F. Bruno,et al.  Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage , 2015 .

[94]  Antje Wörner,et al.  CO2 reforming of methane in a solar driven volumetric receiver–reactor , 1998 .

[95]  Jinhu Yang,et al.  Morphological Control of Single Crystalline Co3O4 Polyhedrons: Selective and Nonselective Growth of Crystal Planes Directed by Differently Charged Surfactants and Solvents , 2010 .

[96]  K. Kugeler,et al.  Transport of nuclear heat by means of chemical energy (nuclear long-distance energy) , 1975 .

[97]  M. Romero,et al.  A directly irradiated solar reactor for kinetic analysis of non‐volatile metal oxides reductions , 2015 .

[98]  John Pye,et al.  A new 500m2 paraboloidal dish solar concentrator , 2011 .

[99]  J. H. Edwards,et al.  The chemistry of methane reforming with carbon dioxide and its current and potential applications , 1995 .

[100]  W. Lipiński,et al.  Solar chemical reactor technology for industrial production of lime , 2006 .

[101]  Luisa F. Cabeza,et al.  Influence of the heat transfer fluid in a CSP plant molten salts charging process , 2017 .

[102]  G. Karagiannakis,et al.  Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: Multi-cyclic assessment and semi-quantitative heat effects estimations , 2016 .

[103]  Souzana Lorentzou,et al.  Monolithic Ceramic Redox Materials for Thermochemical Heat Storage Applications in CSP Plants , 2014 .

[104]  A. D. Rusin,et al.  Thermoanalysis of the system BaO2BaOO2 , 1993 .

[105]  Haruhiko Ohya,et al.  Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction , 2001 .

[106]  Keith Lovegrove,et al.  TECHNO-ECONOMIC ANALYSIS OF A 10 MWe SOLAR THERMAL POWER PLANT USING AMMONIA-BASED THERMOCHEMICAL ENERGY STORAGE , 1999 .

[107]  David P Serrano,et al.  Improving the Thermochemical Energy Storage Performance of the Mn2 O3 /Mn3 O4 Redox Couple by the Incorporation of Iron. , 2015, ChemSusChem.

[108]  P. A. Larsen,et al.  Kinetic and thermodynamic considerations for oxygen absorption/desorption using cobalt oxide , 2006 .

[109]  B. Bogdanovic,et al.  Active MgH2Mg Systems for Reversible Chemical Energy Storage , 1990 .

[110]  Karsten Müller,et al.  Thermodynamic analysis of reversible hydrogenation for heat storage in concentrated solar power plants , 2016 .

[111]  D. PeltonA,et al.  相図解析によるMn3O4‐Co3O4,Fe3O4‐Mn3O4およびFe3O4‐Co3O4スピネルの熱力学 , 1979 .

[112]  Yoshio Arai,et al.  Thermal energy storage by the chemical reaction augmentation of heat transfer and thermal decomposition in the CaOCa(OH)2 powder , 1981 .

[113]  M. Tadé,et al.  Co3O4 nanocrystals with predominantly exposed facets: synthesis, environmental and energy applications , 2013 .

[114]  G. Nathan,et al.  High temperature solar thermochemical process for production of stored energy and oxygen based on CuO/Cu2O redox reactions , 2017 .

[115]  R. Barker,et al.  The reactivity of calcium oxide towards carbon dioxide and its use for energy storage , 1974 .

[116]  W. Lipiński,et al.  Solar thermal processing , 2017 .

[117]  Keith Lovegrove,et al.  A Solar-Driven Ammonia-Based Thermochemical Energy Storage System , 1999 .

[118]  Martin Belusko,et al.  Review on transportable phase change material in thermal energy storage systems , 2017 .

[119]  N. Panwar,et al.  Role of renewable energy sources in environmental protection: A review , 2011 .

[120]  E. Fuentealba,et al.  Experimental aspects of CuO reduction in solar-driven reactors: Comparative performance of a rotary kiln and a packed-bed , 2017 .

[121]  Talbot A. Chubb,et al.  Analysis of gas dissociation solar thermal power system , 1975 .

[122]  G. Jackson,et al.  Thermochemical energy storage in strontium-doped calcium manganites for concentrating solar power applications , 2017 .

[123]  Aldo Steinfeld,et al.  The effect of the gas–solid contacting pattern in a high-temperature thermochemical energy storage on the performance of a concentrated solar power plant , 2016 .

[124]  A. Pelton,et al.  Thermodynamic Assessment of the Al-Mn and Mg-Al-Mn Systems , 2009 .

[125]  Valentin N. Parmon,et al.  High‐temperature chemical heat pump based on reversible catalytic reactions of cyclohexane‐dehydrogenation/benzene‐hydrogenation: Comparison of the potentialities of different flow diagrams , 1993 .

[126]  C. Sattler,et al.  Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 5: Testing of porous ceramic honeycomb and foam cascades based on cobalt and manganese oxides for hybrid sensible/thermochemical heat storage , 2016 .

[127]  Ruzhu Wang,et al.  Thermochemical heat storage for solar heating and cooling systems , 2016 .

[128]  W. Stein,et al.  The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat , 1996 .

[129]  Ruzhu Wang,et al.  Solid–gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer , 2015 .

[130]  H. Fedders,et al.  Operating a pilot plant circuit for energy transport with hydrogen-rich gas , 1982 .

[131]  M. Gallas,et al.  Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept , 2017 .

[132]  M. S. Murthy,et al.  Behavior of Ca(OH)2/CaO pellet under dehydration and hydration , 1994 .

[133]  R. Tamme,et al.  Thermal Conductivity of High-Temperature Multicomponent Materials with Phase Change , 2008 .

[134]  Yoshio Yoshizawa,et al.  Thermal performance of a packed bed reactor of a chemical heat pump for cogeneration , 2000 .

[135]  Christian Sattler,et al.  Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: Testing of cobalt oxide-based powders , 2014 .

[136]  C. Sattler,et al.  A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles , 2015 .

[137]  Ruzhu Wang,et al.  Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy , 2013 .

[138]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[139]  Martin Schmücker,et al.  The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material , 2014 .

[140]  C. Sattler,et al.  Solar thermochemical heat storage via the Co3O4/CoO looping cycle: Storage reactor modelling and experimental validation , 2017 .

[141]  Laurent Cassayre,et al.  High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides , 2017 .

[142]  Saffa Riffat,et al.  The latest advancements on thermochemical heat storage systems , 2015 .

[143]  M. Harasek,et al.  Combining in-situ X-ray diffraction with thermogravimetry and differential scanning calorimetry – An investigation of Co3O4, MnO2 and PbO2 for thermochemical energy storage , 2017 .

[144]  Christian Sattler,et al.  Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 4: Screening of oxides for use in cascaded thermochemical storage concepts , 2016 .

[145]  Christian Sattler,et al.  Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: Cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers , 2015 .

[146]  Yoshio Yoshizawa,et al.  Kinetic feasibility of a chemical heat pump for heat utilization of high-temperature processes , 1999 .

[147]  Wojciech Lipiński,et al.  Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime , 2004 .

[148]  B. R. Stanmore,et al.  Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration , 2005 .

[149]  A. Steinfeld,et al.  Thermally Driven Copper Oxide Redox Cycle for the Separation of Oxygen from Gases , 2012 .

[150]  B. Höhlein,et al.  Experiments for combining nuclear heat with the methane steam-reforming process , 1975 .

[151]  L. Cabeza,et al.  Review of technology: Thermochemical energy storage for concentrated solar power plants , 2016 .

[152]  Keith Lovegrove,et al.  Developing ammonia based thermochemical energy storage for dish power plants , 2003 .

[153]  K Darkwa,et al.  Thermochemical energy storage in inorganic oxides: An experimental evaluation , 1998 .

[154]  Claudio A. Estrada,et al.  First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage , 2015 .

[155]  D. Serrano,et al.  Thermochemical Heat Storage at High Temperatures using Mn2O3/Mn3O4 System: Narrowing the Redox Hysteresis by Metal Co-doping☆ , 2015 .

[156]  I. Jung,et al.  Critical evaluation and thermodynamic modeling of the Al–Mn–O (Al2O3–MnO–Mn2O3) system , 2014 .

[157]  Ruzhu Wang,et al.  A review of promising candidate reactions for chemical heat storage , 2015 .

[158]  Lingai Luo,et al.  Thermal energy storage systems for concentrated solar power plants , 2017 .

[159]  Y. Kato,et al.  Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors , 2001 .

[160]  A. Pelton,et al.  Thermodynamics of Mn3O4 — Co3O4, Fe3O4 — Mn3O4, and Fe3O4 — Co3O4 Spinels by Phase Diagram Analysis , 1979 .

[161]  M. Romero,et al.  100-Wh multi-purpose particle reactor for thermochemical heat storage in concentrating solar power plants. , 2014 .

[162]  D. Serrano,et al.  Thermochemical heat storage based on the Mn2O3/Mn3O4 redox couple: influence of the initial particle size on the morphological evolution and cyclability , 2014 .

[163]  Peter G. Loutzenhiser,et al.  Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions II: Kinetic analyses , 2015 .

[164]  Juan Wu,et al.  Research progress of solar thermochemical energy storage , 2015 .

[165]  Gd Gerard Rieck,et al.  Phase equilibria in the system Cu-Mn-O , 1967 .

[166]  Manuel Romero,et al.  Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones , 2014 .

[167]  S. Fujimoto,et al.  CaO/Ca(OH)2 chemical heat pump system , 2002 .