Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.

[1]  A. Doherty,et al.  DNA Toroids: Framework for DNA Repair in Deinococcus radiodurans and in Germinating Bacterial Spores , 2004, Journal of bacteriology.

[2]  K. Minton,et al.  Expression of recA in Deinococcus radiodurans , 1996, Journal of bacteriology.

[3]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[4]  W. Gilbert,et al.  Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis , 1988, Nature.

[5]  Manuela M. Pereira,et al.  A novel scenario for the evolution of haem-copper oxygen reductases. , 2001, Biochimica et biophysica acta.

[6]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[7]  E. Koonin,et al.  Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics , 2001, Microbiology and Molecular Biology Reviews.

[8]  Y. Shoham,et al.  Microbial hemicellulases. , 2003, Current opinion in microbiology.

[9]  A. Doherty,et al.  Making Ends Meet: Repairing Breaks in Bacterial DNA by Non-Homologous End-Joining , 2006, PLoS genetics.

[10]  D. Schlesinger Role of RecA in DNA damage repair in Deinococcus radiodurans. , 2007, FEMS microbiology letters.

[11]  Bing Tian,et al.  Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans. , 2007, DNA repair.

[12]  Ronald J Moore,et al.  Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Melanie Blasius,et al.  Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans , 2007, BMC Molecular Biology.

[14]  A. Arun,et al.  Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. , 2006, International journal of systematic and evolutionary microbiology.

[15]  A. Pavlov,et al.  Was Earth ever infected by martian biota? Clues from radioresistant bacteria. , 2006, Astrobiology.

[16]  J. Setlow,et al.  THE RESISTANCE OF MICROCOCCUS RADIODURANS TO ULTRAVIOLET RADIATION. I. ULTRAVIOLET-INDUCED LESIONS IN THE CELL'S DNA. , 1964, Biochimica et biophysica acta.

[17]  M. Daly,et al.  Modulating radiation resistance: Insights based on defenses against reactive oxygen species in the radioresistant bacterium Deinococcus radiodurans. , 2006, Clinics in laboratory medicine.

[18]  A. A. Mironov,et al.  Software for analysis of bacterial genomes , 2000, Molecular Biology.

[19]  Y.-M. Zhang,et al.  The DNA excision repair system of the highly radioresistant bacterium Deinococcus radiodurans is facilitated by the pentose phosphate pathway , 2003, Molecular microbiology.

[20]  K. I. Sørensen,et al.  Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression , 1996, Journal of bacteriology.

[21]  S. Busby,et al.  Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon , 1992, Molecular microbiology.

[22]  M. Kikuchi,et al.  Molecular analysis of the Deinococcus radiodurans recA locus and identification of a mutation site in a DNA repair-deficient mutant, rec30. , 1999, Mutation research.

[23]  S F Altschul,et al.  Iterated profile searches with PSI-BLAST--a tool for discovery in protein databases. , 1998, Trends in biochemical sciences.

[24]  Yan Gao,et al.  Protective effects of inosine on mice subjected to lethal total-body ionizing irradiation. , 2007, Journal of radiation research.

[25]  L. Barthelmebs,et al.  Cloning, Deletion, and Characterization of PadR, the Transcriptional Repressor of the Phenolic Acid Decarboxylase-Encoding padA Gene of Lactobacillus plantarum , 2004, Applied and Environmental Microbiology.

[26]  N. Brown,et al.  A Design for Life: Prokaryotic Metal-binding MerR Family Regulators , 2005, Biometals.

[27]  J. Kristjánsson,et al.  Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland , 2001, Applied and Environmental Microbiology.

[28]  P. Forterre,et al.  DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus , 2001, Molecular Genetics and Genomics.

[29]  U. Hübscher,et al.  Involvement of an X family DNA polymerase in double‐stranded break repair in the radioresistant organism Deinococcus radiodurans , 2004, Molecular microbiology.

[30]  Eugene V Koonin,et al.  Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J W Little,et al.  Purified lexA protein is a repressor of the recA and lexA genes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[32]  W. Zumft Cell biology and molecular basis of denitrification. , 1997, Microbiology and molecular biology reviews : MMBR.

[33]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[34]  John R. Battista,et al.  Deinococcus radiodurans — the consummate survivor , 2005, Nature Reviews Microbiology.

[35]  R. Gunsalus,et al.  Oxygen and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: sites for Fnr and NarL protein interactions , 2002, BMC Microbiology.

[36]  K. Makarova,et al.  Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance , 2004, Science.

[37]  Raquel Tobes,et al.  The TetR Family of Transcriptional Repressors , 2005, Microbiology and Molecular Biology Reviews.

[38]  O. White,et al.  Whole-genome shotgun optical mapping of Deinococcus radiodurans. , 1999, Science.

[39]  J. Bouché,et al.  Isolation and mapping of Escherichia coli mutations conferring resistance to division inhibition protein DicB , 1989, Journal of bacteriology.

[40]  H. Sghaier,et al.  Down-regulation of radioresistance by LexA2 in Deinococcus radiodurans. , 2006, Microbiology.

[41]  J. Gebicki,et al.  Proteins are major initial cell targets of hydroxyl free radicals. , 2004, The international journal of biochemistry & cell biology.

[42]  David J Brenner,et al.  Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Lode Wyns,et al.  Toxin-antitoxin modules as bacterial metabolic stress managers. , 2005, Trends in biochemical sciences.

[44]  V. Mattimore,et al.  Novel ionizing radiation-sensitive mutants of Deinococcus radiodurans , 1994, Journal of bacteriology.

[45]  H. Sghaier,et al.  Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans. , 2006, Journal of bioscience and bioengineering.

[46]  D. Jahn,et al.  Bacterial heme biosynthesis and its biotechnological application , 2003, Applied Microbiology and Biotechnology.

[47]  R. Vierstra,et al.  Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. , 1999, Science.

[48]  K. Wong,et al.  Targeted Mutagenesis by Duplication Insertion in the Radioresistant Bacterium Deinococcus radiodurans: Radiation Sensitivities of Catalase (katA) and Superoxide Dismutase (sodA) Mutants , 1999, Journal of bacteriology.

[49]  K. Brinkrolf,et al.  Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. , 2006, Genetics and molecular research : GMR.

[50]  C. Sonntag,et al.  The chemical basis of radiation biology , 1987 .

[51]  K. Minton,et al.  Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioresistance of Deinococcus radiodurans. , 1994, Gene.

[52]  J. Keck,et al.  Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Salzberg,et al.  Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. , 1999, Science.

[54]  A. Kuzminov Recombinational Repair of DNA Damage inEscherichia coli and Bacteriophage λ , 1999, Microbiology and Molecular Biology Reviews.

[55]  K. Minton,et al.  RecA Protein from the Extremely Radioresistant Bacterium Deinococcus radiodurans: Expression, Purification, and Characterization , 2002, Journal of bacteriology.

[56]  E. Koonin,et al.  Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. , 1999, Nucleic acids research.

[57]  U. Gerischer Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. , 2002, Journal of molecular microbiology and biotechnology.

[58]  Internal promoter characterization and expression of the Deinococcus radiodurans pprI-folP gene cluster. , 2006, FEMS microbiology letters.

[59]  Bruce Ravel,et al.  Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance , 2007, PLoS biology.

[60]  B. Moseley,et al.  Repair of Irradiated Transforming Deoxyribonucleic Acid in Wild Type and a Radiation-Sensitive Mutant of Micrococcus radiodurans , 1971, Journal of bacteriology.

[61]  J. Dubochet,et al.  Fine Structure of the Deinococcus radiodurans Nucleoid Revealed by Cryoelectron Microscopy of Vitreous Sections , 2005, Journal of bacteriology.

[62]  J. Ramos,et al.  Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. , 2006, FEMS microbiology reviews.

[63]  A. McLennan,et al.  Characterization of the Mn2+-stimulated (di)adenosine polyphosphate hydrolase encoded by the Deinococcus radiodurans DR2356 nudix gene , 2006, Archives of Microbiology.

[64]  A A Mironov,et al.  [Software for analyzing bacterial genomes]. , 2000, Molekuliarnaia biologiia.

[65]  A. Chakrabarty,et al.  Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide , 1995, Journal of Industrial Microbiology.

[66]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[67]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[68]  S. Salzberg,et al.  Evidence for symmetric chromosomal inversions around the replication origin in bacteria , 2000, Genome Biology.

[69]  S. Shivaji,et al.  Histidine utilisation operon (hut) is upregulated at low temperature in the antarctic psychrotrophic bacterium Pseudomonas syringae. , 1998, FEMS microbiology letters.

[70]  Short repeats and IS elements in the extremely radiation-resistant bacterium Deinococcus radiodurans and comparison to other bacterial species. , 1999, Research in microbiology.

[71]  E. Koonin,et al.  Specific Expansion of Protein Families in the Radioresistant Bacterium Deinococcus Radiodurans , 2004, Genetica.

[72]  Y. Hua,et al.  Ring-like nucleoid does not play a key role in radioresistance of Deinococcus radiodurans , 2007, Science in China Series C: Life Sciences.

[73]  S. Moineau,et al.  Lactococcal Phage Genes Involved in Sensitivity to AbiK and Their Relation to Single-Strand Annealing Proteins , 2004, Journal of bacteriology.

[74]  J. Dubochet,et al.  Study of the Deinococcus radiodurans Nucleoid by Cryoelectron Microscopy of Vitreous Sections: Supplementary Comments , 2006, Journal of bacteriology.

[75]  F. Rainey,et al.  Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. , 1997, International journal of systematic bacteriology.

[76]  M. Daly,et al.  Transcriptome Analysis Applied to Survival of Shewanella oneidensis MR-1 Exposed to Ionizing Radiation , 2006, Journal of bacteriology.

[77]  Benjamin A. Shoemaker,et al.  CDD: a database of conserved domain alignments with links to domain three-dimensional structure , 2002, Nucleic Acids Res..

[78]  Michael Y. Galperin,et al.  House cleaning, a part of good housekeeping , 2006, Molecular microbiology.

[79]  Shigeru Kitayama,et al.  PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation , 2004, Molecular microbiology.

[80]  Seth J. Davis,et al.  Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore , 2001, Nature.

[81]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[82]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[83]  E. Koonin Chance and necessity in cellular response to challenge , 2007, Molecular systems biology.

[84]  T. Vallaeys,et al.  LadR, a new PadR-related transcriptional regulator from Listeria monocytogenes, negatively regulates the expression of the multidrug efflux pump MdrL. , 2006, FEMS microbiology letters.

[85]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[86]  Eugene V Koonin,et al.  Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance , 2005, BMC Evolutionary Biology.

[87]  E. Wright,et al.  Untargeted effects of ionizing radiation: implications for radiation pathology. , 2006, Mutation research.

[88]  Kathrin Heinz,et al.  Lesion Bypass Activity of DNA Polymerase A from the Extremely Radioresistant Organism Deinococcus radiodurans* , 2007, Journal of Biological Chemistry.

[89]  J. Battista,et al.  A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae , 2005, BMC Microbiology.

[90]  K. Minton,et al.  An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans , 1996, Journal of bacteriology.

[91]  P. Gacesa Bacterial progress ARTICLE alginate biosynthesis - recent and future prospects , 1998 .

[92]  K. Minton Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. , 1996, Mutation research.

[93]  M. Kikuchi,et al.  Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. , 1999, Mutation research.

[94]  P. Gacesa Bacterial alginate biosynthesis--recent progress and future prospects. , 1998, Microbiology.

[95]  M Bolognesi,et al.  Conserved patterns in the Cu,Zn superoxide dismutase family. , 1994, Journal of molecular biology.

[96]  F. Sato,et al.  Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. , 1999, Journal of biochemistry.

[97]  N. Sträter,et al.  X-ray structure of the Escherichia coli periplasmic 5'-nucleotidase containing a dimetal catalytic site , 1999, Nature Structural Biology.

[98]  K. Minton,et al.  Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans , 1996, Journal of bacteriology.

[99]  L. Reitzer,et al.  Purine Catabolism in Escherichia coliand Function of Xanthine Dehydrogenase in Purine Salvage , 2000, Journal of bacteriology.

[100]  K. Minton,et al.  Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments , 2000, Nature Biotechnology.

[101]  M. Kikuchi,et al.  Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans. , 2004, Uchū Seibutsu Kagaku.

[102]  Radhey S. Gupta Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes , 1998, Microbiology and Molecular Biology Reviews.

[103]  K. Makarova,et al.  Physiologic Determinants of Radiation Resistance inDeinococcus radiodurans , 2000, Applied and Environmental Microbiology.

[104]  A. Tanaka,et al.  Screening of Genes Involved in Isooctane Tolerance in Saccharomyces cerevisiae by Using mRNA Differential Display , 2000, Applied and Environmental Microbiology.

[105]  M. Kikuchi,et al.  Mutation in recR gene of Deinococcus radiodurans and possible involvement of its product in the repair of DNA interstrand cross-links. , 2000, Mutation research.

[106]  M. Daly,et al.  Engineering radiation-resistant bacteria for environmental biotechnology. , 2000, Current opinion in biotechnology.

[107]  T. Kunkel,et al.  DNA mismatch repair. , 2005, Annual review of biochemistry.

[108]  Francisco Castillo,et al.  Hydroxylamine Assimilation by Rhodobacter capsulatus E1F1 , 2004, Journal of Biological Chemistry.

[109]  F. J. Mojica,et al.  Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria , 2000, Molecular microbiology.

[110]  M. Daly,et al.  Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction. , 2006, Microbiology.

[111]  E. Koonin,et al.  Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52 , 2002, BMC Genomics.

[112]  Y. N. Lee,et al.  Production of two different catalase-peroxidases by Deinococcus radiophilus. , 2000, FEMS microbiology letters.

[113]  Takeshi Naganuma,et al.  Distribution of Microorganisms in the Subsurface of the Manus Basin Hydrothermal Vent Field in Papua New Guinea , 2003, Applied and Environmental Microbiology.

[114]  Miroslav Radman,et al.  Reassembly of shattered chromosomes in Deinococcus radiodurans , 2006, Nature.

[115]  S. W. Li,et al.  Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) byDeinococcus radiodurans R1 , 2000, Applied and Environmental Microbiology.

[116]  M. Hofnung,et al.  Global response of Escherichia coli cells to a treatment with 7-methoxy-2-nitronaphtho[2,1-b]furan (R7000), an extremely potent mutagen. , 1996, Mutation research.

[117]  D. Cheo,et al.  The SOB system of Bacillus subtilis: a global regulon involved in DNA repair and differentiation. , 1991, Research in microbiology.

[118]  N. Grishin,et al.  Genome trees constructed using five different approaches suggest new major bacterial clades , 2001, BMC Evolutionary Biology.

[119]  G. Reysset,et al.  Cloning and sequencing of a chromosomal fragment fromClostridium acetobutylicum strain ABKn8 conferring chemical-damaging agents and UV resistance toE. coli recA strains , 1994, Current Microbiology.

[120]  James K. Fredrickson,et al.  Engineering Deinococcus geothermalis for Bioremediation of High-Temperature Radioactive Waste Environments , 2003, Applied and Environmental Microbiology.

[121]  H. Itoh,et al.  Mutation of D. radiodurans in a gene homologous to ruvB of E. coli. , 1997, Mutation research.

[122]  S. West,et al.  Structure of the single-strand annealing domain of human RAD52 protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[123]  K. Minton,et al.  Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans , 1995, Journal of bacteriology.

[124]  Lawrence P Wackett,et al.  How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. , 2005, FEMS microbiology reviews.

[125]  S. Jünemann Cytochrome bd terminal oxidase. , 1997, Biochimica et biophysica acta.

[126]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[127]  Michael J. Daly,et al.  Resistance to Radiation , 1995, Science.

[128]  I. Mian,et al.  The IrrE Protein of Deinococcus radiodurans R1 Is a Novel Regulator of recA Expression , 2002, Journal of bacteriology.

[129]  A. Earl,et al.  Preserving Genome Integrity: The DdrA Protein of Deinococcus radiodurans R1 , 2004, PLoS biology.

[130]  K. Yokoyama,et al.  Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors. , 2006, FEMS microbiology reviews.

[131]  B. Palsson,et al.  Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. , 2005, Genome research.

[132]  Y. Hua,et al.  LexA analog (dra0074) is a regulatory protein that is irrelevant to recA induction. , 2004, Journal of biochemistry.

[133]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[134]  K. Minton,et al.  In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans , 1994, Journal of bacteriology.

[135]  Michael Y. Galperin,et al.  Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. , 1999, Genome research.

[136]  D. Cheo,et al.  Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis , 1991, Journal of bacteriology.

[137]  R. Hille Molybdenum and tungsten in biology. , 2002, Trends in biochemical sciences.

[138]  K. Minton,et al.  Restoration of the DNA damage resistance of Deinococcus radiodurans DNA polymerase mutants by Escherichia coli DNA polymerase I and Klenow fragment. , 1994, Mutation research.

[139]  P. Neubauer,et al.  Characterization of Adhesion Threads of Deinococcus geothermalis as Type IV Pili , 2006, Journal of bacteriology.

[140]  David P. Giedroc,et al.  Structural Determinants of Metal Selectivity in Prokaryotic Metal-responsive Transcriptional Regulators , 2005, Biometals.

[141]  Barry Lai,et al.  Elemental and Redox Analysis of Single Bacterial Cells by X-ray Microbeam Analysis , 2004, Science.

[142]  Scott N Peterson,et al.  Analysis of Deinococcus radiodurans's Transcriptional Response to Ionizing Radiation and Desiccation Reveals Novel Proteins That Contribute to Extreme Radioresistance , 2004, Genetics.

[143]  Naama Brenner,et al.  Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge , 2007, Molecular systems biology.

[144]  M. Lidstrom,et al.  Development of a defined medium supporting rapid growth for Deinococcus radiodurans and analysis of metabolic capacities , 2006, Applied Microbiology and Biotechnology.

[145]  J. Courcelle,et al.  Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. , 2001, Genetics.

[146]  Peer Bork,et al.  SMART: a web-based tool for the study of genetically mobile domains , 2000, Nucleic Acids Res..

[147]  Boris G. Mirkin,et al.  Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell , 2005, Nucleic acids research.

[148]  J. Chapman,et al.  Isothermal strand-displacement amplification applications for high-throughput genomics. , 2002, Genomics.

[149]  Weber,et al.  Microbial communities of printing paper machines , 1998, Journal of applied microbiology.

[150]  M. J. Park,et al.  Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. , 2001, Cryobiology.

[151]  M. Kikuchi,et al.  The LexA Protein from Deinococcus radiodurans Is Not Involved in RecA Induction following γ Irradiation , 2001, Journal of bacteriology.

[152]  Y. Hua,et al.  PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. , 2003, Biochemical and biophysical research communications.

[153]  M. Kikuchi,et al.  The LexA Protein from Deinococcus radiodurans Is Not Involvedin RecA Induction following γ Irradiation , 2002 .

[154]  R. Woodgate,et al.  Identification of additional genes belonging to the LexA regulon in Escherichia coli , 2000, Molecular microbiology.

[155]  M. Jobling,et al.  The nucleotide sequence of a plasmid determinant for resistance to tellurium anions. , 1988, Gene.

[156]  A. Kuzminov Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. , 1999, Microbiology and molecular biology reviews : MMBR.

[157]  J. Piškur,et al.  Thymidine Kinase Diversity in Bacteria , 2006, Nucleosides, nucleotides & nucleic acids.

[158]  Edward N Baker,et al.  The crystal structure of aminoglycoside-3'-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance. , 2003, Journal of molecular biology.

[159]  K. Minton,et al.  Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans , 1994, Journal of bacteriology.

[160]  K. Minton,et al.  Recombination between a resident plasmid and the chromosome following irradiation of the radioresistant bacterium Deinococcus radiodurans. , 1997, Gene.

[161]  K. Minton,et al.  Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans , 1993, Journal of bacteriology.

[162]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[163]  F. A. Rainey,et al.  Colored moderately thermophilic bacteria in paper-machine biofilms , 2003, Journal of Industrial Microbiology and Biotechnology.

[164]  V. Mattimore,et al.  Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation , 1996, Journal of bacteriology.

[165]  Katherine H. Huang,et al.  Comparative genomics of the lactic acid bacteria , 2006, Proceedings of the National Academy of Sciences.

[166]  K. Minton,et al.  Partial complementation of the UV sensitivity of Deinococcus radiodurans excision repair mutants by the cloned denV gene of bacteriophage T4. , 1991, Mutation research.

[167]  Eyal Shimoni,et al.  Ringlike Structure of the Deinococcus radiodurans Genome: A Key to Radioresistance? , 2003, Science.

[168]  J. Imlay,et al.  Pathways of oxidative damage. , 2003, Annual review of microbiology.

[169]  Luciana Albuquerque,et al.  Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov. , 2005, FEMS microbiology letters.

[170]  L. Chasin,et al.  Induction and repression of the histidine-degrading enzymes of Bacillus subtilis. , 1968, The Journal of biological chemistry.