Continuous homogeneous asymmetric transfer hydrogenation of ketones: lessons from kinetics.

Is polymer enlargement of homogeneous catalysts a tedious task? Is not batch operation with homogeneous catalysts the optimum performance point for homogeneous catalysis? Is kinetic modelling relevant to more than academic questions in homogeneous catalysis? Can all answers for a given system be answered satisfactory? In the authors' view, answers to these questions are no, no, yes, and depends. Polymer enlargement allowed the continuous operation of transfer hydrogenation in a chemical membrane reactor with total turnover numbers of up to 2.6 x 10(3) and a space-time yield of 0.58 kg L(-1) d(-1) with an enantiomeric ratio of 26.8 (enantiomeric excess 92.8 %) for a conversion level of 80 %. This was predicted from simulation conducted with a model from kinetic batch experiments adopted for continuous application. These simulations for the polymer-enlarged and the unmodified catalyst show that achieving comparable performance cannot be obtained by batch operation.

[1]  A. Bommarius,et al.  Application of the continuous Sharpless dihydroxylation , 2001 .

[2]  T. Ikariya,et al.  The Catalyst Precursor, Catalyst, and Intermediate in the RuII‐Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones , 1997 .

[3]  Udo Kragl,et al.  Asymmetric reduction of acetophenone in membrane reactors: comparison of oxazaborolidine and alcohol dehydrogenase catalysed processes , 1999 .

[4]  C. Wandrey,et al.  The Chemzyme Membrane Reactor in the Fine Chemicals Industry , 2001 .

[5]  A. Bommarius,et al.  The membrane reactor in the fine chemicals industry , 2001 .

[6]  H. Wan,et al.  Asymmetric transfer hydrogenation of prochiral ketones catalyzed by chiral ruthenium complexes with aminophosphine ligands , 1999 .

[7]  R. Noyori,et al.  Katalysatorvorstufe, Katalysator und Zwischenstufe des RuII‐katalysierten, asymmetrischen Wasserstofftransfers zwischen Alkoholen und Ketonen , 1997 .

[8]  C. Wandrey,et al.  A polymer-enlarged homogeneously soluble oxazaborolidine catalyst for the asymmetric reduction of ketones by borane , 1997 .

[9]  Lasse Greiner,et al.  Kinetic Study of Homogeneous Alkene Hydrogenation by Model Discrimination , 2004 .

[10]  U. Kragl,et al.  Kontinuierliche asymmetrische Synthese in einem Membranreaktor , 1996 .

[11]  R. Noyori,et al.  A Ruthenium(II) Complex with a C2-Symmetric Diphosphine/Diamine Tetradentate Ligand for Asymmetric Transfer Hydrogenation of Aromatic Ketones† , 1996 .

[12]  U. Kragl,et al.  Continuous Asymmetric Synthesis in a Membrane Reactor , 1996 .

[13]  Udo Kragl,et al.  Asymmetric hydrogenation in a membrane reactor: recycling of the chiral catalyst by using a retainable micellar system , 2001 .

[14]  M R Kula,et al.  Continuous enzymatic transformation in an enzyme-membrane reactor with simultaneous NADH regeneration. , 1987, Methods in enzymology.

[15]  T. Ikariya,et al.  Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by Chiral Ruthenium(II) Complexes , 1995 .

[16]  A. Heck,et al.  The detection of intermediates in the ruthenium(II) catalysed asymmetric hydrogenation of ketones using electrospray ionisation mass spectrometry , 2000 .

[17]  O. Levenspiel Chemical Reaction Engineering , 1972 .

[18]  D. Bergbreiter The use of soluble polymers to effect homogeneous catalyst separation and reuse , 1998 .

[19]  C. Wandrey,et al.  Resolution of 1,2-Diols by Enzyme-Catalyzed Oxidation with Anodic, Mediated Cofactor Regeneration in the Extractive Membrane Reactor: Gaining Insight by Adaptive Simulation , 2004 .

[20]  Johann T. B. H. Jastrzebski,et al.  SELEKTIVE HYDROVINYLIERUNG VON STYROL IM MEMBRANREAKTOR : ANWENDUNG VON CARBOSILANDENDRIMEREN MIT HEMILABILEN P, O-LIGANDEN , 1999 .

[21]  Ryoji Noyori,et al.  The Metal−Ligand Bifunctional Catalysis: A Theoretical Study on the Ruthenium(II)-Catalyzed Hydrogen Transfer between Alcohols and Carbonyl Compounds , 2000 .

[22]  A. Liese,et al.  Continuous Application of Chemzymes in a Membrane Reactor: Asymmetric Transfer Hydrogenation of Acetophenone , 2001 .

[23]  P. Andersson,et al.  Ru(arene)(amino alcohol)-Catalyzed Transfer Hydrogenation of Ketones: Mechanism and Origin of Enantioselectivity , 1999 .

[24]  M. Lappert Applied homogeneous catalysis with organometallic compounds, Vols. 1 and 2, B. Cornils, W.A. Herrmann (Eds.). VCH, London (1996) , 1997 .

[25]  Udo Kragl,et al.  Polymer enlarged oxazaborolidines in a membrane reactor: enhancing effectivity by retention of the homogeneous catalyst , 1998 .

[26]  S. Herrmann,et al.  Kontinuierliche Erzeugung von NADH aus NAD⊕ und Formiat mit einem molekulargewichtsvergrößerten Homogenkatalysator in einem Membranreaktor , 1990 .

[27]  Ivo F J Vankelecom,et al.  Polymeric membranes in catalytic reactors. , 2002, Chemical reviews.

[28]  U. Kragl,et al.  Selective Hydrovinylation of Styrene in a Membrane Reactor: Use of Carbosilane Dendrimers with Hemilabile P,O Ligands. , 1999, Angewandte Chemie.

[29]  Manfred T. Reetz,et al.  Allylic Substitution with Dendritic Palladium Catalysts in a Continuously Operating Membrane Reactor , 1999 .

[30]  Kamalesh K. Sirkar,et al.  Membrane in a reactor: A functional perspective , 1999 .