Convergence of asynchronous Jacobi-Newton-iterations

Asynchronous iterations often converge under different conditions than their synchronous counterparts. In this paper we will study the global convergence of Jacobi-Newton-like methods for nonlinear equations Fx = 0. It is a known fact, that the synchronous algorithm converges monotonically, if F is a convex M-function and the starting values x0 andy0 meet the conditionFx0 ≤ 0 ≤ Fy0. In the paper it will be shown, which modifications are necessary to guarantee a similar convergence behavior for an asynchronous computation. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  A. Frommer On asynchronous iterations in partially ordered spaces , 1991 .

[2]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[3]  V. Mehrmann,et al.  Choosing Poles So That the Single-Input Pole Placement Problem Is Well Conditioned , 1998, SIAM J. Matrix Anal. Appl..

[4]  Volker Mehrmann,et al.  Where is the nearest non-regular pencil? , 1998 .

[5]  Reinhold Schneider,et al.  Multiscale compression of BEM equations for electrostatic systems , 1996 .

[6]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[7]  Gérard M. Baudet,et al.  Asynchronous Iterative Methods for Multiprocessors , 1978, JACM.

[8]  Michael Schreiber,et al.  No enhancement of the localization length for two interacting particles in a random potential , 1996 .

[9]  M. Schreiber,et al.  Multifractal analysis of the metal-insulator transition in anisotropic systems , 1996, cond-mat/9609276.

[10]  B. Kleemann,et al.  Multiscale Methods for Boundary Integral Equations and Their Application to Boundary Value Problems in Scattering Theory and Geodesy , 1996 .

[11]  A. Frommer,et al.  Asynchronous parallel methods for enclosing solutions of nonlinear equations , 1995 .

[12]  Thilo Penzl,et al.  Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..

[13]  Reinhold Schneider,et al.  On the creation of sparse boundary element matrices for two dimensional electrostatics problems using the orthogonal Haar wavelet , 1997 .

[14]  Thomas Apel,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern Anisotropic Mesh Reenement for Singularly Perturbed Reaction Diiusion Problems , 2007 .

[15]  U. Reichel Partitionierung von Finite-Elemente-Netzen , 1998 .

[16]  Arnd Meyer,et al.  Zur Berechnung von Spannungs- und Deformationsfeldern an Interface-Ecken im nichtlinearen Deformationsbereich auf Parallelrechnern , 1998 .

[17]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[18]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..