Photosystem I‐based Biophotovoltaics on Nanostructured Hematite

The electronic coupling between a robust red algal photosystem I (PSI) associated with its light harvesting antenna (LHCI) and nanocrystalline n‐type semiconductors, TiO2 and hematite (α‐Fe2O3) is utilized for fabrication of the biohybrid dye‐sensitized solar cells (DSSC). PSI‐LHCI is immobilized as a structured multilayer over both semiconductors organized as highly ordered nanocrystalline arrays, as evidenced by FE‐SEM and XRD spectroscopy. Of all the biohybrid DSSCs examined, α‐Fe2O3/PSI‐LHCI biophotoanode operates at a highest quantum efficiency and generates the largest open circuit photocurrent compared to the tandem system based on TiO2/PSI‐LHCI material. This is accomplished by immobilization of the PSI‐LHCI complex with its reducing side towards the hematite surface and nanostructuring of the PSI‐LHCI multilayer in which the subsequent layers of this complex are organized in the head‐to‐tail orientation. The biohybrid PSI‐LHCI‐DSSC is capable of sustained photoelectrochemical H2 production upon illumination with visible light above 590 nm. Although the solar conversion efficiency of the PSI‐LHCI/hematite DSSC is currently below a practical use, the system provides a blueprint for a genuinely green solar cell that can be used for molecular hydrogen production at a rate of 744 μmoles H2 mg Chl−1 h−1, placing it amongst the best performing biohybrid solar‐to‐fuel nanodevices.

[1]  I. Willner,et al.  Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells , 2014, Photosynthesis Research.

[2]  Jung-Min Kim,et al.  The effect of metal oxide nanoparticle concentrations in PEDOT: PSS layer on the performance of P3HT:PCBM organic solar cells , 2013 .

[3]  Roel van de Krol,et al.  Water-splitting catalysis and solar fuel devices: artificial leaves on the move. , 2013, Angewandte Chemie.

[4]  F. Yakuphanoglu,et al.  Preparation and characterization of dye sensitized solar cell based on nanostructured Fe2O3 , 2013 .

[5]  Artur Braun,et al.  “In rust we trust”. Hematite – the prospective inorganic backbone for artificial photosynthesis , 2013 .

[6]  J. Barber,et al.  A Reaction Center-dependent Photoprotection Mechanism in a Highly Robust Photosystem II from an Extremophilic Red Alga, Cyanidioschyzon merolae* , 2013, The Journal of Biological Chemistry.

[7]  U. Paik,et al.  Three dimensional-TiO(2) nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. , 2013, Chemical communications.

[8]  J. Kargul,et al.  Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. , 2012, Journal of plant physiology.

[9]  Alex B. F. Martinson,et al.  Toward solar fuels: Water splitting with sunlight and “rust”? , 2012 .

[10]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[11]  R. Mazur,et al.  Chloroplast biogenesis - correlation between structure and function. , 2012, Biochimica et biophysica acta.

[12]  Jean-Marie Tarascon,et al.  Towards systems materials engineering. , 2012, Nature materials.

[13]  M. Treviño,et al.  Noradrenergic ‘Tone’ Determines Dichotomous Control of Cortical Spike-Timing-Dependent Plasticity , 2012, Scientific Reports.

[14]  T. Graule,et al.  Functionalization of Nanostructured Hematite Thin‐Film Electrodes with the Light‐Harvesting Membrane Protein C‐Phycocyanin Yields an Enhanced Photocurrent , 2012 .

[15]  Shuguang Zhang,et al.  Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO , 2012, Scientific Reports.

[16]  Sudip Kumar Batabyal,et al.  Solution processed transition metal sulfides: application as counter electrodes in dye sensitized solar cells (DSCs). , 2011, Physical chemistry chemical physics : PCCP.

[17]  W. Schuhmann,et al.  Wiring photosynthetic enzymes to electrodes , 2011 .

[18]  W. Schuhmann,et al.  Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels , 2011 .

[19]  James Barber,et al.  Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement , 2011, Science.

[20]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[21]  T. Graule,et al.  Evolution of an Oxygen Near-Edge X-ray Absorption Fine Structure Transition in the Upper Hubbard Band in alpha-Fe2O3 upon Electrochemical Oxidation , 2011, 1106.1089.

[22]  A. Ganguli,et al.  Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures , 2011, Nanoscale research letters.

[23]  Peter N. Ciesielski,et al.  Enhanced Photocurrent Production by Photosystem I Multilayer Assemblies , 2010 .

[24]  P. Somasundaran,et al.  On the origin of an unusual dependence of (bio)chemical reactivity of ferric hydroxides on nanoparticle size. , 2010, Physical chemistry chemical physics : PCCP.

[25]  S. Santabarbara,et al.  Bidirectional electron transfer in the reaction centre of photosystem I. , 2010, Journal of integrative plant biology.

[26]  Anke Weidenkaff,et al.  Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.

[27]  Kevin J. Emmett,et al.  Photosystem I - based biohybrid photoelectrochemical cells. , 2010, Bioresource technology.

[28]  I. Willner,et al.  Generation of photocurrents by bis-aniline-cross-linked Pt nanoparticle/photosystem I composites on electrodes. , 2010, The journal of physical chemistry. B.

[29]  A. Busch,et al.  The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. , 2010, The Plant journal : for cell and molecular biology.

[30]  Somnath C. Roy,et al.  Synthesis and applications of electrochemically self-assembled titania nanotube arrays. , 2010, Physical chemistry chemical physics : PCCP.

[31]  D. Bryant,et al.  Wiring photosystem I for direct solar hydrogen production. , 2010, Biochemistry.

[32]  Yoshinori Yamanoi,et al.  Plugging a molecular wire into photosystem I: reconstitution of the photoelectric conversion system on a gold electrode. , 2009, Angewandte Chemie.

[33]  F. Yakuphanoglu,et al.  The effect of temperature on the charge transport and transient absorption properties of K27 sensitized DSSC , 2008 .

[34]  David E Cliffel,et al.  Rapid assembly of photosystem I monolayers on gold electrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[35]  C. Slavov,et al.  Trap-limited charge separation kinetics in higher plant photosystem I complexes. , 2008, Biophysical journal.

[36]  Shachar Richter,et al.  Photovoltaic activity of photosystem I-based self-assembled monolayer. , 2007, Journal of the American Chemical Society.

[37]  Yoshinori Yamanoi,et al.  Bio-photosensor: Cyanobacterial photosystem I coupled with transistor via molecular wire. , 2007, Biochimica et biophysica acta.

[38]  Nathan Nelson,et al.  The structure of a plant photosystem I supercomplex at 3.4 Å resolution , 2007, Nature.

[39]  Sumaeth Chavadej,et al.  Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers , 2007 .

[40]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[41]  Pierre Tufféry,et al.  PCE: web tools to compute protein continuum electrostatics , 2005, Nucleic Acids Res..

[42]  Nikolai Lebedev,et al.  Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices , 2004 .

[43]  Nathan Nelson,et al.  Crystal structure of plant photosystem I , 2003, Nature.

[44]  J. Barber,et al.  Three-dimensional Reconstruction of a Light-harvesting Complex I- Photosystem I (LHCI-PSI) Supercomplex from the Green Alga Chlamydomonas reinhardtii , 2003, The Journal of Biological Chemistry.

[45]  W Leibl,et al.  Electron transfer in photosystem I. , 2001, Biochimica et biophysica acta.

[46]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[47]  S. Allakhverdiev,et al.  Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. , 2000, Plant physiology.

[48]  S. Cardon,et al.  Direct Spectrophotometric Measurement of Photosystem I and Photosystem II Activities of Photosynthetic Membrane Preparations from Cyanophora paradoxa, Phormidium laminosum, and Spinach. , 1982, Plant Physiology.

[49]  B. Abraham-Shrauner Nonlinear poisson-Boltzmann potential for a uniformly charged dielectric sphere in an electrolyte , 1973 .

[50]  T. Wydrzynski,et al.  Molecular Solar Fuels , 2011 .

[51]  L. H. Grimme,et al.  A new procedure for the determination of chlorophylls a and b and its application to normal and regreening Chlorella. , 1974, Analytical biochemistry.