A Tableau for Temporal Logic over the Reals

We provide a simple, sound, complete and terminating tableau decision procedure for the temporal logic of until and since over the real numbers model of time. This logic is an important basis for reasoning about concurrency, metric constraints and planning. Despite its usefulness and long history, there are no existing implementable reasoning techniques for it. The tableau uses a mosaic-based technique to translate the satisfiability problem into a question about the way that intervals of a real-flowed model relate to each other. It builds on top of recently developed reasoning tools for general linear time by applying some interesting but computationally simple checks.

[1]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[2]  Countably Complementable,et al.  LINEAR ORDERINGS , 2006 .

[3]  Maarten Marx,et al.  Mosaics and step-by-step. Remarks on “A modal logic of relations” , 1999 .

[4]  Maarten Marx,et al.  The Mosaic Method for Temporal Logics , 2000, TABLEAUX.

[5]  Mark Reynolds A Tableau for RTL ( long version ) , 2013 .

[6]  Dov M. Gabbay,et al.  An Axiomitization of the Temporal Logic with Until and Since over the Real Numbers , 1990, J. Log. Comput..

[7]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[8]  Mark Reynolds,et al.  An axiomatization for until and since over the reals without the IRR rule , 1992, Stud Logica.

[9]  阿部 浩一,et al.  Fundamenta Mathematicae私抄 : 退任の辞に代えて , 1987 .

[10]  Nicole Fassbinder Automated Reasoning with Analytic Tableaux and Related Methods , 1997, Lecture Notes in Computer Science.

[11]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[12]  Mark Alexander Reynolds,et al.  A tableau for general linear temporal logic , 2013, J. Log. Comput..

[13]  Mark Reynolds,et al.  The complexity of the temporal logic with "until" over general linear time , 2003, J. Comput. Syst. Sci..

[14]  Mark Reynolds The complexity of temporal logic over the reals , 2010, Ann. Pure Appl. Log..

[15]  Mark Reynolds Dense Time Reasoning via Mosaics , 2009, 2009 16th International Symposium on Temporal Representation and Reasoning.

[16]  H. Läuchli,et al.  On the elementary theory of linear order , 1966 .

[17]  Vaughan R. Pratt,et al.  Models of program logics , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[18]  Alexander Moshe Rabinovich Temporal logics over linear time domains are in PSPACE , 2012, Inf. Comput..

[19]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[20]  John P. Burgess,et al.  The decision problem for linear temporal logic , 1985, Notre Dame J. Formal Log..

[21]  Mark Reynolds,et al.  An Efficient Tableau for Linear Time Temporal Logic , 2013, Australasian Conference on Artificial Intelligence.

[22]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[23]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.