Stochastic Epidemic Models with Inference

[1]  H. Andersson,et al.  Stochastic Epidemic Models and Their Statistical Analysis , 2000 .

[2]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[3]  O. Schneewind,et al.  Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines. , 2011, Vaccine.

[4]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[5]  Adam Shwartz,et al.  Large Deviations For Performance Analysis , 2019 .

[6]  F. Ball A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models , 1986, Advances in Applied Probability.

[7]  Xiaowei Wu,et al.  Branching Processes with Biological Applications , 2010 .

[8]  Ingemar Nåsell,et al.  On the time to extinction in recurrent epidemics , 1999 .

[9]  Mikiko Senga,et al.  Ebola virus disease in West Africa--the first 9 months of the epidemic and forward projections. , 2014, The New England journal of medicine.

[10]  É. Pardoux,et al.  Large deviations of the exit measure through a characteristic boundary for a Poisson driven SDE , 2018, ESAIM: Probability and Statistics.

[11]  Gianpaolo Scalia-Tomba Asymptotic final-size distribution for some chain-binomial processes , 1985, Advances in Applied Probability.

[12]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[13]  Étienne Pardoux,et al.  Large deviation principle for epidemic models , 2017, Journal of Applied Probability.

[14]  Thomas Sellke,et al.  On the asymptotic distribution of the size of a stochastic epidemic , 1983, Journal of Applied Probability.

[15]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[16]  B. T. Grenfell,et al.  Disease Extinction and Community Size: Modeling the Persistence of Measles , 1997, Science.

[17]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[18]  Gianpaolo Scalia-Tomba On the asymptotic final size distribution of epidemics in heterogeneous populations , 1990 .

[19]  A D Barbour,et al.  Duration of closed stochastic epidemic , 1975 .

[20]  J. Giesecke,et al.  Modern Infectious Disease Epidemiology , 1994 .

[21]  R. Doney,et al.  A limit theorem for a class of supercritical branching processes , 1972, Journal of Applied Probability.

[22]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[23]  T. Kurtz Strong approximation theorems for density dependent Markov chains , 1978 .

[24]  Frank Ball,et al.  The final size and severity of a generalised stochastic multitype epidemic model , 1993 .