Data-based guarantees of set invariance properties

For a discrete-time linear system, we use data from a single open-loop experiment to design directly a feedback controller enforcing that a given (polyhedral) set of the state is invariant and given (polyhedral) constraints on the control are satisfied. By building on classical results from model-based set invariance and a fundamental result from Willems et al., the controller designed from data has the following desirable features. The satisfaction of the above properties is guaranteed only from data, it can be assessed by solving a numerically-efficient linear program, and, under a certain rank condition, a data-based solution is feasible if and only if a model-based solution is feasible.

[1]  Sergio M. Savaresi,et al.  Optimal input design for direct data-driven tuning of model-reference controllers , 2013, Autom..

[2]  Giacomo Baggio,et al.  Data-Driven Minimum-Energy Controls for Linear Systems , 2019, IEEE Control Systems Letters.

[3]  Frank Allgöwer,et al.  Robust data-driven state-feedback design , 2019, 2020 American Control Conference (ACC).

[4]  Alberto Bemporad,et al.  Data-based predictive control via direct weight optimization , 2018 .

[5]  Pietro Tesi,et al.  Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness , 2019, IEEE Transactions on Automatic Control.

[6]  Paolo Rapisarda,et al.  On the linear quadratic data-driven control , 2007, 2007 European Control Conference (ECC).

[7]  Sergio M. Savaresi,et al.  Data-driven design of two degree-of-freedom nonlinear controllers: The -IBC approach , 2016, Autom..

[8]  Kim Peter Wabersich,et al.  Scalable synthesis of safety certificates from data with application to learning-based control , 2018, 2018 European Control Conference (ECC).

[9]  Giorgio Battistelli,et al.  Direct Control Design via Controller Unfalsification , 2018 .

[10]  Javier García,et al.  A comprehensive survey on safe reinforcement learning , 2015, J. Mach. Learn. Res..

[11]  M. Cwikel,et al.  Admissible sets and feedback control for discrete-time linear dynamical systems with bounded controls and states , 1984 .

[12]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..

[13]  Alexandre S. Bazanella,et al.  Data-Driven LQR Control Design , 2018, IEEE Control Systems Letters.

[14]  John Lygeros,et al.  Data-Enabled Predictive Control: In the Shallows of the DeePC , 2018, 2019 18th European Control Conference (ECC).

[15]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[16]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[17]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[18]  Lorenzo Fagiano,et al.  Direct feedback control design for nonlinear systems , 2013, Autom..

[19]  J. Hennet,et al.  Feedback control of linear discrete-time systems under state and control constraints , 1988 .

[20]  Mitio Nagumo Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .

[21]  A. Karimi,et al.  Iterative correlation‐based controller tuning , 2004 .

[22]  M. Kanat Camlibel,et al.  Data Informativity: A New Perspective on Data-Driven Analysis and Control , 2019, IEEE Transactions on Automatic Control.

[23]  Aranya Chakrabortty,et al.  On Model-Free Reinforcement Learning of Reduced-Order Optimal Control for Singularly Perturbed Systems , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[24]  Mario Sznaier,et al.  A Moments Based Approach to Designing MIMO Data Driven Controllers for Switched Systems , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[25]  Frank Allgöwer,et al.  Data-Driven Model Predictive Control With Stability and Robustness Guarantees , 2019, IEEE Transactions on Automatic Control.

[26]  Bart De Moor,et al.  A note on persistency of excitation , 2005, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[27]  Franco Blanchini Feedback control for linear time-invariant systems with state and control bounds in the presence of disturbances , 1990 .