Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors

Abstract Great opportunities exist for ion-selective electrodes (ISEs) in the fields of environmental monitoring and of wearable applications for example as the sensing part in wireless networks. In this review special attention is given to the recent results obtained with solid contact ion-selective electrodes and solid contact reference electrodes. Their combination as disposable sensing platform may offer the best solution to eliminate issues commonly experienced with ISEs and lead in a short term to their commercialization. Future research will likely focus on the miniaturization of the current devices and on the further development of non conventional potentiometric methods, e.g. , controlled potential thin-layer coulometry.

[1]  Wassana Yantasee,et al.  Electrochemical Sensors for the Detection of Lead and Other Toxic Heavy Metals: The Next Generation of Personal Exposure Biomonitors , 2007, Environmental health perspectives.

[2]  J. C. Bevington,et al.  Chemical Reviews , 1970, Nature.

[3]  Ewa Bulska,et al.  Experimental study on stability of different solid contact arrangements of ion-selective electrodes. , 2010, Talanta.

[4]  Klára Tóth,et al.  How to assess the limits of ion-selective electrodes: method for the determination of the ultimate span, response range, and selectivity coefficients of neutral carrier-based cation selective electrodes. , 2006, Analytical chemistry.

[5]  Yu Qin,et al.  Single-piece solid-contact ion-selective electrodes with polymer–carbon nanotube composites , 2010 .

[6]  J. Riu,et al.  Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes , 2011, Analytical and bioanalytical chemistry.

[7]  M. Sogorb,et al.  Enzyme concentration as an important factor in the in vitro testing of the stereospecificity of the enzymatic hydrolysis of organophosphorus compounds. , 1999, Toxicology in vitro : an international journal published in association with BIBRA.

[8]  Dermot Diamond,et al.  A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration , 2010 .

[9]  Sejin Park,et al.  Solid‐State Reference Electrode Based on Electrodeposited Nanoporous Platinum for Microchip , 2007 .

[10]  Byeongdu Lee,et al.  Erratum: Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell (The Journal of Physical Chemistry B) , 2010 .

[11]  C. Wardak A highly selective lead-sensitive electrode with solid contact based on ionic liquid. , 2011, Journal of hazardous materials.

[12]  Ewa Bulska,et al.  Silver and lead all-plastic sensors—polyaniline vs. poly(3,4-ethyledioxythiophene) solid contact , 2009 .

[13]  Róbert E. Gyurcsányi,et al.  Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes , 2009 .

[14]  Mohammad Reza Ganjali,et al.  Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade , 2008, Sensors.

[15]  Martial Taillefert,et al.  Remote in situ voltammetric techniques to characterize the biogeochemical cycling of trace metals in aquatic systems. , 2008, Journal of environmental monitoring : JEM.

[16]  Igor V. Pletnev,et al.  Hydrophobic ionic liquids in plasticized membranes of ion-selective eletctrodes , 2010 .

[17]  Johan Bobacka,et al.  Solid‐Contact Reference Electrodes Based on Lipophilic Salts , 2009 .

[18]  Christina E. Dyllick,et al.  Analytical and Bioanalytical Chemistry , 2002 .

[19]  Ernö Pretsch,et al.  Elimination of undesirable water layers in solid-contact polymeric ion-selective electrodes. , 2008, Analytical chemistry.

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  John F. McCabe,et al.  Fluoride release for restorative materials and its effect on biofilm formation in natural saliva , 2008, Journal of materials science. Materials in medicine.

[22]  O. I. Kulapina,et al.  Ion-selective electrodes for determining cephazolin in biological media , 2008, Pharmaceutical Chemistry Journal.

[23]  Enric Cabruja,et al.  Early determination of cystic fibrosis by electrochemical chloride quantification in sweat. , 2009, Biosensors & bioelectronics.

[24]  Eric Bakker,et al.  Pulstrodes: triple pulse control of potentiometric sensors. , 2004, Journal of the American Chemical Society.

[25]  F. Rius,et al.  An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination. , 2011, Chemical communications.

[26]  Robin J Law,et al.  Sensing the sea. , 2005, Trends in biotechnology.

[27]  R. E. Gyurcsányi,et al.  Hyphenated FT-IR-attenuated total reflection and electrochemical impedance spectroscopy technique to study the water uptake and potential stability of polymeric solid-contact ion-selective electrodes. , 2011, Analytical chemistry.

[28]  C. Holding Lab on a chip , 2004, Genome Biology.

[29]  Claudio Zuliani,et al.  Formation and growth of oxide layers at platinum and gold nano- and microelectrodes. , 2010, Analytical chemistry.

[30]  César Fernández-Sánchez,et al.  Ultramicroelectrode Array Based Sensors: A Promising Analytical Tool for Environmental Monitoring , 2010, Sensors.

[31]  A. Kisiel,et al.  Potentiometric responses of ion-selective electrodes after galvanostatically controlled incorporation of primary ions. , 2011, Talanta.

[32]  Archana Singh,et al.  Thiocyanate selective sensor based on tripodal zinc complex for direct determination of thiocyanate in biological samples , 2007 .

[33]  D. Diamond,et al.  Chemo/bio-sensor networks , 2006, Nature materials.

[34]  Ayman H Kamel,et al.  A Novel Poly(vinyl chloride) Matrix Membrane Sensor for Batch and Flow-Injection Determinations of Thiocyanate, Cyanide and Some Metal Ions , 2009, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[35]  M. Goreti F. Sales,et al.  Trimethoprim-selective electrodes with molecularly imprinted polymers acting as ionophores and potentiometric transduction on graphite solid-contact , 2011 .

[36]  Jozef Mieczkowski,et al.  Tailoring Solution Cast Poly(3,4‐dioctyloxythiophene) Transducers for Potentiometric All‐Solid‐State Ion‐Selective Electrodes , 2006 .

[37]  Hasini Perera,et al.  Pulsed galvanostatic control of solid-state polymeric ion-selective electrodes. , 2007, Analytical chemistry.

[38]  Christopher J. Harvey,et al.  Formulation and stability of a novel artificial human sweat under conditions of storage and use. , 2010, Toxicology in vitro : an international journal published in association with BIBRA.

[39]  W. Plieth,et al.  Electrochemistry for material science , 2008 .

[40]  A. Ivaska,et al.  Potentiometric ion sensors. , 2008, Chemical reviews.

[41]  Francesc Xavier Muñoz,et al.  Electroanalysis Utilizing Amperometric Microdisk Electrode Arrays , 2007 .

[42]  Takashi Katsu,et al.  S,S,S-Tris(2-ethylhexyl) phosphorotrithioate as an effective solvent mediator for a mexiletine-sensitive membrane electrode , 2007, Analytical and bioanalytical chemistry.

[43]  Mathieu Lepot,et al.  Recent Trends in Monitoring of European Water Framework Directive Priority Substances Using Micro-Sensors: A 2007–2009 Review , 2010, Sensors.

[44]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[45]  Eric Bakker,et al.  Thin layer coulometry with ionophore based ion-selective membranes. , 2010, Analytical chemistry.

[46]  Ashutosh Kumar Singh,et al.  Determination of thiocyanate ions at nanolevel in real samples using coated graphite electrode based on synthesised macrocyclic Zn(II) complex , 2011, Analytical and bioanalytical chemistry.

[47]  P Hajdú,et al.  [Analytical methods I]. , 1975, Arzneimittel-Forschung.

[48]  C. Fernández-Pereira,et al.  Journal of Hazardous Materials , 2021 .

[49]  Jadwiga Opydo,et al.  Salivary Fluoride Concentrations and Fluoride Ingestion Following Application of Preparations Containing High Concentration of Fluoride , 2010, Biological Trace Element Research.

[50]  F. Rius,et al.  Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. , 2009, Analytical chemistry.

[51]  Tim Lincoln,et al.  Chemical communications , 1992, Nature.

[52]  Archana Singh,et al.  Nickel pyrazolyl borate complexes: Synthesis, structure and analytical application in biological and environmental samples as anion selective sensors , 2008 .

[53]  Jidong Guo,et al.  Voltammetric heparin-selective electrode based on thin liquid membrane with conducting polymer-modified solid support. , 2006, Analytical chemistry.

[54]  T. S. West Analytical Chemistry , 1969, Nature.

[55]  N. D. de Rooij,et al.  Potential Drifts of Solid‐Contacted Ion‐Selective Electrodes Due to Zero‐Current Ion Fluxes Through the Sensor Membrane , 2000 .

[56]  Ernö Pretsch,et al.  Lowering the detection limit of solvent polymeric ion-selective electrodes. 1. Modeling the influence of steady-state ion fluxes , 1999 .

[57]  A. Michalska,et al.  Method of achieving desired potentiometric responses of polyacrylate-based ion-selective membranes. , 2008, Analytical chemistry.

[58]  Dermot Diamond,et al.  Guidelines for Improving the Lower Detection Limit of Ion‐Selective Electrodes: A Systematic Approach , 2007 .

[59]  D. Diamond,et al.  Wireless sensor networks and chemo-/biosensing. , 2008, Chemical reviews.

[60]  Eric Bakker,et al.  Ferrocene bound poly(vinyl chloride) as ion to electron transducer in electrochemical ion sensors. , 2010, Analytical chemistry.

[61]  M. A. Alonso-Lomillo,et al.  Recent developments in the field of screen-printed electrodes and their related applications. , 2007, Talanta.

[62]  Eric Bakker,et al.  Background Current Elimination in Thin Layer Ion-Selective Membrane Coulometry. , 2010, Electrochemistry communications.

[63]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[64]  Johan Bobacka,et al.  Potentiometric Ion Sensors Based on Conducting Polymers , 2003 .

[65]  Tse-Chuan Chou,et al.  Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor. , 2006, Analytical chemistry.

[66]  C. G. Zoski Handbook of Electrochemistry , 2006 .

[67]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[68]  Damià Barceló,et al.  Sensors and biosensors in support of EU Directives , 2009 .

[69]  M. Arvand,et al.  Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore , 2007 .

[70]  Ernö Pretsch,et al.  Rational design of potentiometric trace level ion sensors. A Ag+-selective electrode with a 100 ppt detection limit. , 2002, Analytical chemistry.

[71]  Justin M Zook,et al.  Mathematical model of current-polarized ionophore-based ion-selective membranes. , 2008, The journal of physical chemistry. B.

[72]  Miguel Valcárcel,et al.  Analytical connotations of point-of-care testing. , 2010, The Analyst.

[73]  Microchemical Journal , 1957, Nature.

[74]  L. Mendonça-Hagler,et al.  Trends in biotechnology and biosafety in Brazil. , 2008, Environmental biosafety research.

[75]  Joseph Wang,et al.  Electrochemical sensors for environmental monitoring: design, development and applications. , 2004, Journal of environmental monitoring : JEM.

[76]  Detlef Snakenborg,et al.  Disposable Miniaturized Screen‐Printed pH and Reference Electrodes for Potentiometric Systems , 2011 .

[77]  Eric Bakker,et al.  Operational Limits of Controlled Current Coulometry with Ion‐Selective Polymeric Membranes , 2008 .

[78]  Jordi Riu,et al.  Disposable planar reference electrode based on carbon nanotubes and polyacrylate membrane. , 2011, Analytical chemistry.

[79]  Dermot Diamond,et al.  Development of miniature all-solid-state potentiometric sensing system , 2010 .

[80]  Danielle G. Marty,et al.  海洋微生物群に対する3種類の油流出処理剤の効果(Marine Pollution Bulletin,10,1979) , 1980 .

[81]  Dermot Diamond,et al.  Potentiometric Nonlinear Multivariate Calibration with Genetic Algorithm and Simplex Optimization , 1997 .

[82]  John P. Hart,et al.  Chapter 23 Screen-printed electrochemical (bio)sensors in biomedical, environmental and industrial applications , 2007 .

[83]  Eric Bakker,et al.  Membrane response model for ion-selective electrodes operated by controlled-potential thin-layer coulometry. , 2011, Analytical chemistry.

[84]  Johan Bobacka,et al.  Chapter 4 Ion sensors with conducting polymers as ion-to-electron transducers , 2007 .

[85]  D. Diamond,et al.  Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection , 2012 .

[86]  Takashi Kakiuchi,et al.  New class of Ag/AgCl electrodes based on hydrophobic ionic liquid saturated with AgCl. , 2007, Analytical chemistry.

[87]  Eric Bakker,et al.  Solid contact potentiometric sensors for trace level measurements. , 2006, Analytical chemistry.

[88]  Guo-Li Shen,et al.  A Novel Potentiometric Sensor for Thiocyanate Based on an Amide‐Linked Manganese Diporphyrin Xanthene , 2008 .

[89]  Ewa Bulska,et al.  Poly(n-butyl acrylate) based lead (II) selective electrodes. , 2009, Talanta.

[90]  Z. Samec,et al.  Amperometric Ion‐Selective Electrode for Alkali Metal Cations Based on a Room‐Temperature Ionic Liquid Membrane , 2009 .

[91]  Fritz Scholz,et al.  A solid-state redox buffer as interface of solid-contact ISEs , 2010 .

[92]  A. Michalska,et al.  All-plastic, disposable, low detection limit ion-selective electrodes , 2004 .

[93]  Tanja Radu,et al.  Evaluation of Liquid‐and Solid‐Contact, Pb2+‐Selective Polymer‐Membrane Electrodes for Soil Analysis , 2008 .

[94]  Joaquín A. Ortuño,et al.  Flow-Injection Coulometric Detection Based on Ion Transfer and Its Application to the Determination of Chlorpromazine , 2008, Sensors.

[95]  R. E. Gyurcsányi,et al.  Polyaniline nanoparticle-based solid-contact silicone rubber ion-selective electrodes for ultratrace measurements. , 2010, Analytical chemistry.

[96]  L. Ambrosio,et al.  Journal of materials science: materials in medicine. , 2003, Journal of materials science. Materials in medicine.

[97]  U. Guth,et al.  Solid-state reference electrodes for potentiometric sensors , 2009 .

[98]  Michael Dröscher,et al.  Angewandte Chemie International Edition feiert 50. Geburtstag , 2011 .

[99]  E. Bakker,et al.  Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes. , 2001, Analytical chemistry.

[100]  Claudio Zuliani,et al.  Single nanocavity electrodes: fabrication, electrochemical and photonic properties. , 2010, Chemical communications.

[101]  J. Bobacka Conducting Polymer‐Based Solid‐State Ion‐Selective Electrodes , 2006 .

[102]  W Bryce TrAC—trends in analytical chemistry, reference edition vol. 7 Elsevier, Amsterdam, 1988, Pages xii + 404. US$200.0, Dfl. 380.00. , 1991 .

[103]  A. Bard,et al.  Metal/polypyrrole quasi-reference electrode for voltammetry in nonaqueous and aqueous solutions. , 2006, Analytical chemistry.

[104]  Dermot Diamond,et al.  Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy , 2010 .

[105]  M. J. Gismera,et al.  Screen-printed sensor for batch and flow injection potentiometric chromium(VI) monitoring , 2010, Analytical and bioanalytical chemistry.

[106]  Maciej Mazur,et al.  Polypyrrole microcapsules as a transducer for ion-selective electrodes , 2010 .

[107]  Andrea Ridolfi,et al.  BIOTEX—Biosensing Textiles for Personalised Healthcare Management , 2010, IEEE Transactions on Information Technology in Biomedicine.

[108]  Johan Bobacka,et al.  Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes , 2004 .

[109]  Eric Bakker,et al.  Electrochemical sample matrix elimination for trace-level potentiometric detection with polymeric membrane ion-selective electrodes. , 2008, Analytical chemistry.

[110]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008 .

[111]  Dermot Diamond,et al.  Integration of analytical measurements and wireless communications--current issues and future strategies. , 2008, Talanta.

[112]  J. Opydo-Szymaczek,et al.  Assessment of fluoride exposure following application of toothpaste containing high concentration of fluoride , 2010 .

[113]  Eric Bakker,et al.  Beyond potentiometry: robust electrochemical ion sensor concepts in view of remote chemical sensing. , 2008, Talanta.

[114]  O. I. Kulapina,et al.  Ionometric determination of cefotaxime in biological media , 2008, Pharmaceutical Chemistry Journal.

[115]  Sergey Piletsky,et al.  Biosensors for marine pollution research, monitoring and control. , 2002, Marine pollution bulletin.

[116]  Andreas Stein,et al.  Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts , 2009, Journal of solid state electrochemistry : current research and development in science and technology.

[117]  Ernö Pretsch,et al.  A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit , 2004, Analytical and bioanalytical chemistry.

[118]  A. Bratov,et al.  Recent trends in potentiometric sensor arrays--a review. , 2010, Analytica chimica acta.

[119]  D. Betteridge Trends in analytical chemistry , 1980 .

[120]  Eric Bakker,et al.  Dynamic diffusion model for tracing the real-time potential response of polymeric membrane ion-selective electrodes. , 2004, Analytical chemistry.

[121]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[122]  Piers Andrew,et al.  Electrochemical biosensors at the nanoscale. , 2009, Lab on a chip.

[123]  D. Diamond,et al.  Point-of-need diagnosis of cystic fibrosis using a potentiometric ion-selective electrode array. , 2000, The Analyst.

[124]  Andrzej Lewenstam,et al.  Chapter 1 Clinical analysis of blood gases and electrolytes by ion-selective sensors , 2007 .

[125]  B. Pejcic,et al.  Ion-Selective Electrode Potentiometry in Environmental Analysis , 2007 .

[126]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .