Existence of Perfect 3-Deletion-Correcting Codes

Bours [4] recently showed some constructions for perfect 2 and 3-deletion-correcting codes from combinatorial designs. He settled existence of perfect 2-deletion-correcting codes with words of length 4. However, the existence of perfect 3-deletion-correcting codes with words of length 5, or T*(2, 5, v), remained unsettled for v ≡ 7, 8 (mod 10) and v = 13, 14, 15, 16. In this paper we provide new constructions for these codes from combinatorial designs, and show that a T*(2, 5, v) exists for all v.