Bifurcations of Optimal Vector Fields
暂无分享,去创建一个
[1] Dieter Grass,et al. Small-noise asymptotics of Hamilton-Jacobi-Bellman equations and bifurcations of stochastic optimal control problems , 2015, Commun. Nonlinear Sci. Numer. Simul..
[2] Floris Takens,et al. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .
[3] Kazuo Nishimura,et al. A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Non-Concave Production Function , 1983 .
[4] René Thom,et al. Structural stability and morphogenesis - an outline of a general theory of models , 1977, Advanced book classics.
[5] F. Wagener,et al. A bifurcation theory for a class of discrete time Markovian stochastic systems , 2008 .
[6] W. Kyner. Invariant Manifolds , 1961 .
[7] G. Vegter,et al. On the computation of invariant manifolds of fixed points , 1995 .
[8] A. Skiba,et al. Optimal Growth with a Convex-Concave Production Function , 1978 .
[9] D. Grass. Numerical computation of the optimal vector field in a fishery model , 2010 .
[10] P. Hartman. Ordinary Differential Equations , 1965 .
[11] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[12] J. Caulkins,et al. Bifurcating DNS Thresholds in a Model of Organizational Bridge Building , 2007 .
[13] F. Wagener,et al. Phenomenological and ratio bifurcations of a class of discrete time stochastic processes , 2011 .
[14] D. Grass,et al. Numerical computation of the optimal vector field: Exemplified by a fishery model , 2012, Journal of economic dynamics & control.
[15] Hamel. Constantin Caratheodory, Prof. an der Universität München, Variationsrechnung und partielle Differentialgleichungen erster Ordnung. XI + 407 S. m. 31 Fig. im Text. Leipzig und Berlin 1935, B. G. Teubner Verlag. Preis 22 M , 1935 .
[16] Florian Wagener,et al. Bifurcations of optimal vector fields in the shallow lake model , 2010 .
[17] G. Feichtinger,et al. Skiba Thresholds in Optimal Control of Illicit Drug Use , 2002 .
[18] Jonathan P. Caulkins,et al. Skiba thresholds in a model of controlled migration , 2005 .
[19] F. Wagener. Structural analysis of optimal investment for firms with non-concave revenues , 2005 .
[20] Phillippe Michel,et al. On the Transversality Condition in Infinite Horizon Optimal Problems , 1982 .
[21] Florian Wagener,et al. From Mind to Market: A Global, Dynamic Analysis of R&D , 2011 .
[22] Suresh P. Sethi,et al. Optimal advertising policy with the contagion model , 1979 .
[23] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[24] W. Brock,et al. Global Asymptotic Stability of Optimal Control Systems with Applications to the Theory of Economic Growth , 1976 .
[25] Suresh P. Sethi,et al. Optimal Quarantine Programmes for Controlling an Epidemic Spread , 1978 .
[26] I. Bogaevsky. Perestroikas of shocks in optimal control , 2005 .
[27] René Thom,et al. Structural stability and morphogenesis , 1977, Pattern Recognit..
[28] Georges Zaccour,et al. Optimal control and differential games : essays in honor of Steffen Jørgensen , 2002 .
[29] Jonathan P. Caulkins,et al. Optimal Dynamic Allocation of Treatment and Enforcement in Illicit Drug Control , 2001, Oper. Res..
[30] F. Wagener,et al. In Defense of Trusts: R&D Cooperation in Global Perspective , 2015 .
[31] Anastasios Xepapadeas,et al. The Economics of Shallow Lakes , 2000 .
[32] Flavio Toxvaerd,et al. The Optimal Control of Infectious Diseases Via Prevention and Treatment , 2012 .
[33] Colin W. Clark,et al. Mathematical Bioeconomics: The Optimal Management of Renewable Resources. , 1993 .
[34] S. Salo,et al. Nonconvexities in Optimal Pollution Accumulation , 1996 .
[35] Florian Wagener,et al. Skiba points and heteroclinic bifurcations, with applications to the shallow lake system , 2003 .
[36] C. Carathéodory,et al. Variationsrechnung und partielle Differentialgleichungen erster Ordnung , 1935 .
[37] E. Wagenmakers,et al. Transformation invariant stochastic catastrophe theory , 2005 .
[38] The Economics of Shallow Lakes , 2003 .
[39] F. Ramsey,et al. THE MATHEMATICAL THEORY OF SAVING , 1928 .
[40] Suresh P. Sethi,et al. Nearest feasible paths in optimal control problems: Theory, examples, and counterexamples , 1977 .
[41] W. Fleming,et al. Controlled Markov processes and viscosity solutions , 1992 .
[42] F. Wagener. Skiba Points for Small Discount Rates , 2006 .
[44] V. Boltyanskii. Sufficient Conditions for Optimality and the Justification of the Dynamic Programming Method , 1966 .
[45] Vladimir I. Arnold,et al. Singularities of Caustics and Wave Fronts , 1990 .