Bifurcations of Optimal Vector Fields

We study the structure of the solution set of a class of infinite-horizon dynamic programming problems with one-dimensional state spaces, as well as their bifurcations, as problem parameters are varied. The solutions are represented as the integral curves of a multivalued optimal vector field on state space. Generically, there are three types of integral curves: stable points, open intervals that are forward asymptotic to a stable point and backward asymptotic to an unstable point, and half-open intervals that are forward asymptotic to a stable point and backward asymptotic to an indifference point; the latter are initial states to multiple optimal trajectories. We characterize all bifurcations that occur generically in one-and two-parameter families. Most of these are related to global dynamical bifurcations of the state-costate system of the problem.

[1]  Dieter Grass,et al.  Small-noise asymptotics of Hamilton-Jacobi-Bellman equations and bifurcations of stochastic optimal control problems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[2]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[3]  Kazuo Nishimura,et al.  A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Non-Concave Production Function , 1983 .

[4]  René Thom,et al.  Structural stability and morphogenesis - an outline of a general theory of models , 1977, Advanced book classics.

[5]  F. Wagener,et al.  A bifurcation theory for a class of discrete time Markovian stochastic systems , 2008 .

[6]  W. Kyner Invariant Manifolds , 1961 .

[7]  G. Vegter,et al.  On the computation of invariant manifolds of fixed points , 1995 .

[8]  A. Skiba,et al.  Optimal Growth with a Convex-Concave Production Function , 1978 .

[9]  D. Grass Numerical computation of the optimal vector field in a fishery model , 2010 .

[10]  P. Hartman Ordinary Differential Equations , 1965 .

[11]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[12]  J. Caulkins,et al.  Bifurcating DNS Thresholds in a Model of Organizational Bridge Building , 2007 .

[13]  F. Wagener,et al.  Phenomenological and ratio bifurcations of a class of discrete time stochastic processes , 2011 .

[14]  D. Grass,et al.  Numerical computation of the optimal vector field: Exemplified by a fishery model , 2012, Journal of economic dynamics & control.

[15]  Hamel Constantin Caratheodory, Prof. an der Universität München, Variationsrechnung und partielle Differentialgleichungen erster Ordnung. XI + 407 S. m. 31 Fig. im Text. Leipzig und Berlin 1935, B. G. Teubner Verlag. Preis 22 M , 1935 .

[16]  Florian Wagener,et al.  Bifurcations of optimal vector fields in the shallow lake model , 2010 .

[17]  G. Feichtinger,et al.  Skiba Thresholds in Optimal Control of Illicit Drug Use , 2002 .

[18]  Jonathan P. Caulkins,et al.  Skiba thresholds in a model of controlled migration , 2005 .

[19]  F. Wagener Structural analysis of optimal investment for firms with non-concave revenues , 2005 .

[20]  Phillippe Michel,et al.  On the Transversality Condition in Infinite Horizon Optimal Problems , 1982 .

[21]  Florian Wagener,et al.  From Mind to Market: A Global, Dynamic Analysis of R&D , 2011 .

[22]  Suresh P. Sethi,et al.  Optimal advertising policy with the contagion model , 1979 .

[23]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[24]  W. Brock,et al.  Global Asymptotic Stability of Optimal Control Systems with Applications to the Theory of Economic Growth , 1976 .

[25]  Suresh P. Sethi,et al.  Optimal Quarantine Programmes for Controlling an Epidemic Spread , 1978 .

[26]  I. Bogaevsky Perestroikas of shocks in optimal control , 2005 .

[27]  René Thom,et al.  Structural stability and morphogenesis , 1977, Pattern Recognit..

[28]  Georges Zaccour,et al.  Optimal control and differential games : essays in honor of Steffen Jørgensen , 2002 .

[29]  Jonathan P. Caulkins,et al.  Optimal Dynamic Allocation of Treatment and Enforcement in Illicit Drug Control , 2001, Oper. Res..

[30]  F. Wagener,et al.  In Defense of Trusts: R&D Cooperation in Global Perspective , 2015 .

[31]  Anastasios Xepapadeas,et al.  The Economics of Shallow Lakes , 2000 .

[32]  Flavio Toxvaerd,et al.  The Optimal Control of Infectious Diseases Via Prevention and Treatment , 2012 .

[33]  Colin W. Clark,et al.  Mathematical Bioeconomics: The Optimal Management of Renewable Resources. , 1993 .

[34]  S. Salo,et al.  Nonconvexities in Optimal Pollution Accumulation , 1996 .

[35]  Florian Wagener,et al.  Skiba points and heteroclinic bifurcations, with applications to the shallow lake system , 2003 .

[36]  C. Carathéodory,et al.  Variationsrechnung und partielle Differentialgleichungen erster Ordnung , 1935 .

[37]  E. Wagenmakers,et al.  Transformation invariant stochastic catastrophe theory , 2005 .

[38]  The Economics of Shallow Lakes , 2003 .

[39]  F. Ramsey,et al.  THE MATHEMATICAL THEORY OF SAVING , 1928 .

[40]  Suresh P. Sethi,et al.  Nearest feasible paths in optimal control problems: Theory, examples, and counterexamples , 1977 .

[41]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[42]  F. Wagener Skiba Points for Small Discount Rates , 2006 .

[43]  Genesis of indifference thresholds and infinitely many indifference points in discrete time infinite horizon optimisation problems , 2009 .

[44]  V. Boltyanskii Sufficient Conditions for Optimality and the Justification of the Dynamic Programming Method , 1966 .

[45]  Vladimir I. Arnold,et al.  Singularities of Caustics and Wave Fronts , 1990 .