Fractional generalized Hamilton method for equilibrium stability of dynamical systems

Abstract In this paper we present a new method for the equilibrium stability of a dynamical system, i.e., the fractional generalized Hamilton method. We reveal the uncertainty and its mathematical representation for the fractional and nonlinear problem and find a general method of constructing a family of fractional dynamical models. And, six criterions of fractional generalized Hamilton method of equilibrium stability are presented. As applications, we explore the equilibrium stability of a fractional Duffing oscillator model and a fractional Whittaker model.

[1]  Lin Li,et al.  Fractional generalized Hamiltonian mechanics , 2013 .

[2]  Ulrich Parlitz,et al.  Superstructure in the bifurcation set of the Duffing equation ẍ + dẋ + x + x3 = f cos(ωt) , 1985 .

[3]  J. L. Martin,et al.  Generalized classical dynamics, and the ‘classical analogue’ of a Fermioscillator , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  Shao-Kai Luo,et al.  A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems , 2012 .

[5]  Wei Li,et al.  Conformal invariance and Mei conserved quantity for generalized Hamilton systems with additional terms , 2016 .

[6]  Agacik Zafer The stability of linear periodic Hamiltonian systems on time scales , 2013, Appl. Math. Lett..

[7]  O. Agrawal,et al.  Fractional hamilton formalism within caputo’s derivative , 2006, math-ph/0612025.

[8]  Dumitru Baleanu,et al.  The Hamilton formalism with fractional derivatives , 2007 .

[9]  Wei Jiang,et al.  Stability criterion for a class of nonlinear fractional differential systems , 2014, Appl. Math. Lett..

[10]  Eqab M. Rabei,et al.  On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative , 2007, 0708.1690.

[11]  Mohammad Saleh Tavazoei,et al.  Stability criteria for a class of fractional order systems , 2010 .

[12]  Lin Li,et al.  Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives , 2013 .

[13]  K. Tas,et al.  Fractional hamiltonian analysis of higher order derivatives systems , 2006, math-ph/0612024.

[14]  Malgorzata Klimek,et al.  Lagrangean and Hamiltonian fractional sequential mechanics , 2002 .

[15]  G. Zaslavsky,et al.  Nonholonomic constraints with fractional derivatives , 2006, math-ph/0603067.

[16]  Lin Li,et al.  A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems , 2013 .

[17]  Om Prakash Agrawal,et al.  Generalized Variational Problems and Euler-Lagrange equations , 2010, Comput. Math. Appl..

[18]  Wei Jiang,et al.  Lyapunov stability analysis of fractional nonlinear systems , 2016, Appl. Math. Lett..

[19]  W. Pauli On the hamiltonian structure of non-local field theories , 1953 .

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  Xiang-wei Chen,et al.  Equilibrium points and periodic orbits of higher order autonomous generalized Birkhoff system , 2013 .

[22]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .