Size effects in the torsion of microscale copper wires: Experiment and analysis

The size dependence in the torsional response of microsized polycrystalline copper wires is investigated experimentally using a novel automated torsion balance. Comparing to the corresponding tensile data, we find significant size effects in both the plastic flow stress and initial yielding in torsion, while only slight size effects present in tension. Our micro-torsion tests have high resolution in the low strain region. The experimental observations are explained in terms of a strain gradient plasticity theory with one material length variable.

[1]  H. Van Swygenhoven,et al.  Time-resolved Laue diffraction of deforming micropillars. , 2007, Physical review letters.

[2]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[3]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[4]  Jun Sun,et al.  Strong crystal size effect on deformation twinning , 2010, Nature.

[5]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[6]  D. Dunstan,et al.  Size effects in yield and plasticity under uniaxial and non-uniform loading: experiment and theory , 2011 .

[7]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[8]  Lallit Anand,et al.  A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: Finite deformations , 2005 .

[9]  J. R. Morris,et al.  Size effects and stochastic behavior of nanoindentation pop in. , 2011, Physical review letters.

[10]  Morton E. Gurtin,et al.  A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations , 2005 .

[11]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[12]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[13]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[14]  Norman A. Fleck,et al.  Size effects in the torsion of thin metal wires , 2009 .

[15]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[16]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[17]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[18]  B. Ehrler,et al.  Elastic limit and strain hardening of thin wires in torsion. , 2009, Physical review letters.

[19]  H. Zbib,et al.  Size effects and length scales in gradient plasticity and dislocation dynamics , 2003 .

[20]  George Z. Voyiadjis,et al.  A physically based gradient plasticity theory , 2006 .

[21]  Anthony G. Evans,et al.  A critical assessment of theories of strain gradient plasticity , 2009 .

[22]  Reinhard Pippan,et al.  A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples , 2008 .

[23]  J. Greer,et al.  Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. , 2010, Physical review letters.

[24]  David J. Dunstan,et al.  Size effect in the initiation of plasticity for ceramics in nanoindentation , 2008 .

[25]  Julia R. Greer,et al.  Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale , 2009 .

[26]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[27]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .

[28]  R. H. Dixon,et al.  On the origin of misfit dislocations in InGaAs/GaAs strained layers , 1990 .

[29]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .